If someone said Trump had over a 50% probability of winning in 2016, would that be wrong?
Just for other people reading this thread, the following comments are an excellent case study in how an individual (the above poster) can be so confidently mistaken, even when other posters try to patiently correct them.
May we all be more respectful of our own ignorance.
In statistical modeling you don’t really have right or wrong. You have a level of confidence in a model, a level of confidence in your data, and a statistical probability that an event will occur.
So if my model says RFK has a 98% probability of winning, then it is no more right or wrong than Silver’s model?
If so, then probability would be useless. But it isn’t useless. Probability is useful because it can make predictions that can be tested against reality.
In 2016, Silver’s model predicted that Clinton would win. Which was wrong. He knew his model was wrong, because he adjusted his model after 2016. Why change something that is working properly?
Probability is useful because it can make predictions that can be tested against reality.
Yes. But you’d have to run the test repeatedly and see if the outcome, i.e. Clinton winning, happens as often as the model predicts.
But we only get to run an election once. And there is no guarantee that the most likely outcome will happen on the first try.
You’re conflating things.
Your model itself can be wrong, absolutely.
But for the person above to say Silver got something wrong because a lower probability event happened is a little silly. It’d be like flipping a coin heads side up twice in a row and saying you’ve disproved statistics because heads twice in a row should only happen 1/4 times.