It seems like such a huge amount of water and would require so much energy to get it that high, plus there’s the waste to deal with
Plumber here. Unless we’re talking about sky scrapers the grid pressure is generally enough to lift the water to the top floors. As long as it’s lower than the city water tower there’s no issue. If it’s a flat terrain or the building is on a hill then yes, you might need a pump to boost the pressure. Sewage on the other hand is not an issue - gravity takes care of that.
Finally, “shit-ton” would be a legit word. “This high rise produces 8 shit-tons of energy per month!”
(…considering when fuck-ton will have its day as well…)
Much like the internet, it’s a complex system of tubes.
Pipes.
I’m no expert, but I’ve looked at this in the past. Most large buildings have their own water tanks inside them. If you think of an image of a New York skyline away from the skyscrapers you might picture small water towers on top of most of the buildings. Those are the tanks that supply water for the building. Skyscrapers will have multiple tanks inside the building itself, maybe one every 5 or 10 floors up. There will always be one at the top of the building but it might not be as obvious looking as a small water tower. Each tank will serve just the floors in between it and the next tank below. When the tank needs to be refilled it just draws from the tank below it. This way the building doesn’t pump all the water it needs all the way to the top floor; it only pumps water as high as it needs to go. Keeping water in a tank means it still works like a traditional gravity-fed system and should function for a while even in the event of a power outage.
Handling wastewater is relatively easier, it still just needs to flow down. The pipes just drain into one or more pipes going down to the bottom of the building.
Yes, but multiple tanks throughout the building means they don’t have to pump all the water all the way to the top. They only need to pump the water for the highest floors to the top.
Yes.
Take New York for example. It is my understanding that New York’s municipal water system has enough pressure to pump water 5 stories high, so many of the relatively smaller buildings have large wooden water tanks on their roofs to keep that building’s water pressure relatively constant even during peak demand times. Larger buildings are responsible for pumping their own water hundreds of feet into the air.
Toilet waste (black) water pipes are quite underused for their diameter so it’s enough to just feed dozens of bathrooms’ worth into a reasonable diameter you can still get at a hardware store. Sure, some will have trouble flushing if they all do that at the same time but not too serious.
As for drinking water, some high-rises feature tanks as part of their oscillation damping system anyway, and municipal water towers don’t need to be placed much higher than customers to get decent pressure. I think it’s not the amount but pressure of water at the ground floor that causes engineering challenges. The pumps and tank at the top help, though.