Day 15: Warehouse Woes
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
Haskell
This was a fun one! Iโm quite pleased with moveInto
, which could be easily extended to support arbitrary box shapes.
Solution
import Control.Monad
import Data.Bifunctor
import Data.List
import Data.Map (Map)
import Data.Map qualified as Map
import Data.Set (Set)
import Data.Set qualified as Set
type C = (Int, Int)
readInput :: String -> (Map C Char, [C])
readInput s =
let (room, _ : moves) = break null $ lines s
in ( Map.fromList [((i, j), c) | (i, l) <- zip [0 ..] room, (j, c) <- zip [0 ..] l],
map dir $ concat moves
)
where
dir '^' = (-1, 0)
dir 'v' = (1, 0)
dir '<' = (0, -1)
dir '>' = (0, 1)
moveInto :: Int -> Set C -> C -> C -> Set C -> Maybe (Set C)
moveInto boxWidth walls (di, dj) = go
where
go (i, j) boxes
| (i, j) `Set.member` walls = Nothing
| Just j' <- find (\j' -> (i, j') `Set.member` boxes) $ map (j -) [0 .. boxWidth - 1] =
Set.insert (i + di, j' + dj)
<$> foldM
(flip go)
(Set.delete (i, j') boxes)
[(i + di, j' + z + dj) | z <- [0 .. boxWidth - 1]]
| otherwise = Just boxes
runMoves :: (Map C Char, [C]) -> Int -> Int
runMoves (room, moves) scale = score $ snd $ foldl' move (start, boxes) moves
where
room' = Map.mapKeysMonotonic (second (* scale)) room
Just start = fst <$> find ((== '@') . snd) (Map.assocs room')
walls =
let ps = Map.keysSet $ Map.filter (== '#') room'
in Set.unions [Set.mapMonotonic (second (+ z)) ps | z <- [0 .. scale - 1]]
boxes = Map.keysSet $ Map.filter (== 'O') room'
move (pos@(i, j), boxes) dir@(di, dj) =
let pos' = (i + di, j + dj)
in maybe (pos, boxes) (pos',) $ moveInto scale walls dir pos' boxes
score = sum . map (\(i, j) -> i * 100 + j) . Set.elems
main = do
input <- readInput <$> readFile "input15"
mapM_ (print . runMoves input) [1, 2]
Nim
Very fiddly solution with lots of debugging required.
Code
type
Vec2 = tuple[x,y: int]
Box = array[2, Vec2]
Dir = enum
U = "^"
R = ">"
D = "v"
L = "<"
proc convertPart2(grid: seq[string]): seq[string] =
for y in 0..grid.high:
result.add ""
for x in 0..grid[0].high:
result[^1] &= (
if grid[y][x] == 'O': "[]"
elif grid[y][x] == '#': "##"
else: "..")
proc shiftLeft(grid: var seq[string], col: int, range: HSlice[int,int]) =
for i in range.a ..< range.b:
grid[col][i] = grid[col][i+1]
grid[col][range.b] = '.'
proc shiftRight(grid: var seq[string], col: int, range: HSlice[int,int]) =
for i in countDown(range.b, range.a+1):
grid[col][i] = grid[col][i-1]
grid[col][range.a] = '.'
proc box(pos: Vec2, grid: seq[string]): array[2, Vec2] =
if grid[pos.y][pos.x] == '[':
[pos, (pos.x+1, pos.y)]
else:
[(pos.x-1, pos.y), pos]
proc step(grid: var seq[string], bot: var Vec2, dir: Dir) =
var (x, y) = bot
case dir
of U:
while (dec y; grid[y][x] != '#' and grid[y][x] != '.'): discard
if grid[y][x] == '#': return
if grid[bot.y-1][bot.x] == 'O': swap(grid[bot.y-1][bot.x], grid[y][x])
dec bot.y
of R:
while (inc x; grid[y][x] != '#' and grid[y][x] != '.'): discard
if grid[y][x] == '#': return
if grid[bot.y][bot.x+1] == 'O': swap(grid[bot.y][bot.x+1], grid[y][x])
inc bot.x
of L:
while (dec x; grid[y][x] != '#' and grid[y][x] != '.'): discard
if grid[y][x] == '#': return
if grid[bot.y][bot.x-1] == 'O': swap(grid[bot.y][bot.x-1], grid[y][x])
dec bot.x
of D:
while (inc y; grid[y][x] != '#' and grid[y][x] != '.'): discard
if grid[y][x] == '#': return
if grid[bot.y+1][bot.x] == 'O': swap(grid[bot.y+1][bot.x], grid[y][x])
inc bot.y
proc canMoveVert(box: Box, grid: seq[string], boxes: var HashSet[Box], dy: int): bool =
boxes.incl box
var left, right = false
let (lbox, rbox) = (box[0], box[1])
let lbigBox = box((lbox.x, lbox.y+dy), grid)
let rbigBox = box((rbox.x, lbox.y+dy), grid)
if grid[lbox.y+dy][lbox.x] == '#' or
grid[rbox.y+dy][rbox.x] == '#': return false
elif grid[lbox.y+dy][lbox.x] == '.': left = true
else:
left = canMoveVert(box((lbox.x,lbox.y+dy), grid), grid, boxes, dy)
if grid[rbox.y+dy][rbox.x] == '.': right = true
elif lbigBox == rbigBox: right = left
else:
right = canMoveVert(box((rbox.x, rbox.y+dy), grid), grid, boxes, dy)
left and right
proc moveBoxes(grid: var seq[string], boxes: var HashSet[Box], d: Vec2) =
for box in boxes:
grid[box[0].y][box[0].x] = '.'
grid[box[1].y][box[1].x] = '.'
for box in boxes:
grid[box[0].y+d.y][box[0].x+d.x] = '['
grid[box[1].y+d.y][box[1].x+d.x] = ']'
boxes.clear()
proc step2(grid: var seq[string], bot: var Vec2, dir: Dir) =
case dir
of U:
if grid[bot.y-1][bot.x] == '#': return
if grid[bot.y-1][bot.x] == '.': dec bot.y
else:
var boxes: HashSet[Box]
if canMoveVert(box((x:bot.x, y:bot.y-1), grid), grid, boxes, -1):
grid.moveBoxes(boxes, (0, -1))
dec bot.y
of R:
var (x, y) = bot
while (inc x; grid[y][x] != '#' and grid[y][x] != '.'): discard
if grid[y][x] == '#': return
if grid[bot.y][bot.x+1] == '[': grid.shiftRight(bot.y, bot.x+1..x)
inc bot.x
of L:
var (x, y) = bot
while (dec x; grid[y][x] != '#' and grid[y][x] != '.'): discard
if grid[y][x] == '#': return
if grid[bot.y][bot.x-1] == ']': grid.shiftLeft(bot.y, x..bot.x-1)
dec bot.x
of D:
if grid[bot.y+1][bot.x] == '#': return
if grid[bot.y+1][bot.x] == '.': inc bot.y
else:
var boxes: HashSet[Box]
if canMoveVert(box((x:bot.x, y:bot.y+1), grid), grid, boxes, 1):
grid.moveBoxes(boxes, (0, 1))
inc bot.y
proc solve(input: string): AOCSolution[int, int] =
let chunks = input.split("\n\n")
var grid = chunks[0].splitLines()
let movements = chunks[1].splitLines().join().join()
var robot: Vec2
for y in 0..grid.high:
for x in 0..grid[0].high:
if grid[y][x] == '@':
grid[y][x] = '.'
robot = (x,y)
block p1:
var grid = grid
var robot = robot
for m in movements:
let dir = parseEnum[Dir]($m)
step(grid, robot, dir)
for y in 0..grid.high:
for x in 0..grid[0].high:
if grid[y][x] == 'O':
result.part1 += 100 * y + x
block p2:
var grid = grid.convertPart2()
var robot = (robot.x*2, robot.y)
for m in movements:
let dir = parseEnum[Dir]($m)
step2(grid, robot, dir)
#grid.inspect(robot)
for y in 0..grid.high:
for x in 0..grid[0].high:
if grid[y][x] == '[':
result.part2 += 100 * y + x
TypeScript
Not very optimized code today. Basically just a recursive function
Code
import fs from "fs";
type Point = {x: number, y: number};
enum Direction {
UP = '^',
DOWN = 'v',
LEFT = '<',
RIGHT = '>'
}
const input = fs.readFileSync("./15/input.txt", "utf-8").split(/[\r\n]{4,}/);
const warehouse: string[][] = input[0]
.split(/[\r\n]+/)
.map(row => row.split(""));
const movements: Direction[] = input[1]
.split("")
.map(char => char.trim())
.filter(Boolean)
.map(char => char as Direction);
// Part 1
console.info("Part 1: " + solve(warehouse, movements));
// Part 2
const secondWarehouse = warehouse.map(row => {
const newRow: string[] = [];
for (const char of row) {
if (char === '#') { newRow.push('#', '#'); }
else if (char === 'O') { newRow.push('[', ']'); }
else if (char === '.') { newRow.push('.', '.'); }
else { newRow.push('@', '.'); }
}
return newRow;
});
console.info("Part 2: " + solve(secondWarehouse, movements));
function solve(warehouse: string[][], movements: Direction[]): number {
let _warehouse = warehouse.map(row => [...row]); // Take a copy to avoid modifying the original
const robotLocation: Point = findStartLocation(_warehouse);
for (const move of movements) {
// Under some very specific circumstances in part 2, tryMove returns false, but the grid has already been modified
// "Fix" the issue ba taking a copy so we can easily revert all changes made
// Slow AF of course but rest of this code isn't optimized either, so...
const copy = _warehouse.map(row => [...row]);
if (tryMove(robotLocation, move, _warehouse)) {
if (move === Direction.UP) { robotLocation.y--; }
else if (move === Direction.DOWN) { robotLocation.y++; }
else if (move === Direction.LEFT) { robotLocation.x--; }
else { robotLocation.x++; }
} else {
_warehouse = copy; // Revert changes
}
}
// GPS
let result = 0;
for (let y = 0; y < _warehouse.length; y++) {
for (let x = 0; x < _warehouse[y].length; x++) {
if (_warehouse[y][x] === "O" || _warehouse[y][x] === "[") {
result += 100 * y + x;
}
}
}
return result;
}
function tryMove(from: Point, direction: Direction, warehouse: string[][], movingPair = false): boolean {
const moveWhat = warehouse[from.y][from.x];
if (moveWhat === "#") {
return false;
}
let to: Point;
switch (direction) {
case Direction.UP: to = {x: from.x, y: from.y - 1}; break;
case Direction.DOWN: to = {x: from.x, y: from.y + 1}; break;
case Direction.LEFT: to = {x: from.x - 1, y: from.y}; break;
case Direction.RIGHT: to = {x: from.x + 1, y: from.y}; break;
}
const allowMove = warehouse[to.y][to.x] === "."
|| (direction === Direction.UP && tryMove({x: from.x, y: from.y - 1}, direction, warehouse))
|| (direction === Direction.DOWN && tryMove({x: from.x, y: from.y + 1}, direction, warehouse))
|| (direction === Direction.LEFT && tryMove({x: from.x - 1, y: from.y}, direction, warehouse))
|| (direction === Direction.RIGHT && tryMove({x: from.x + 1, y: from.y}, direction, warehouse));
if (allowMove) {
// Part 1 logic handles horizontal movement of larger boxes just fine. Needs special handling for vertical movement
if (!movingPair && (direction === Direction.UP || direction === Direction.DOWN)) {
if (moveWhat === "[" && !tryMove({x: from.x + 1, y: from.y}, direction, warehouse, true)) {
return false;
}
if (moveWhat === "]" && !tryMove({x: from.x - 1, y: from.y}, direction, warehouse, true)) {
return false;
}
}
// Make the move
warehouse[to.y][to.x] = moveWhat;
warehouse[from.y][from.x] = ".";
return true;
}
return false;
}
function findStartLocation(warehouse: string[][]): Point {
for (let y = 0; y < warehouse.length; y++) {
for (let x = 0; x < warehouse[y].length; x++) {
if (warehouse[y][x] === "@") {
return {x,y};
}
}
}
throw new Error("Could not find start location!");
}
Dart
canMove
does a recursive search and returns all locations that need moving, or none if thereโs an obstacle anywhere downstream. For part2, that involves checking if thereโs half of a box in front of us, and if so ensuring that we also check the other half of that box. I donโt bother tracking whether weโre double-checking as it runs fast enough as is.
import 'dart:math';
import 'package:collection/collection.dart';
import 'package:more/more.dart';
var d4 = <Point<num>>[Point(1, 0), Point(-1, 0), Point(0, 1), Point(0, -1)];
var m4 = '><v^';
solve(List<String> lines, {wide = false}) {
if (wide) {
lines = lines
.map((e) => e
.replaceAll('#', '##')
.replaceAll('.', '..')
.replaceAll('O', '[]')
.replaceAll('@', '@.'))
.toList();
}
var room = {
for (var r in lines.takeWhile((e) => e.isNotEmpty).indexed())
for (var c in r.value.split('').indexed().where((c) => (c.value != '.')))
Point<num>(c.index, r.index): c.value
};
var bot = room.entries.firstWhere((e) => e.value == '@').key;
var moves = lines.skipTo('').join('').split('');
for (var d in moves.map((m) => d4[m4.indexOf(m)])) {
if (didMove(d, bot, room)) bot += d;
}
return room.entries
.where((e) => e.value == '[' || e.value == 'O')
.map((e) => e.key.x + 100 * e.key.y)
.sum;
}
bool didMove(Point m, Point here, Map<Point, String> room) {
var moves = canMove(m, here, room).toSet();
if (moves.isNotEmpty) {
var vals = moves.map((e) => room.remove(e)!).toList();
for (var ms in moves.indexed()) {
room[ms.value + m] = vals[ms.index];
}
return true;
}
return false;
}
List<Point> canMove(Point m, Point here, Map<Point, String> room) {
if (room[here + m] == '#') return [];
if (!room.containsKey(here + m)) return [here];
var cm1 = canMove(m, here + m, room);
if (m.x != 0) return (cm1.isEmpty) ? [] : cm1 + [here];
List<Point> cm2 = [here];
if (room[here + m] == '[') cm2 = canMove(m, here + m + Point(1, 0), room);
if (room[here + m] == ']') cm2 = canMove(m, here + m - Point(1, 0), room);
return cm1.isEmpty || cm2.isEmpty ? [] : cm1 + cm2 + [here];
}
Rust
Part 2 was a bit tricky. Moving into a box horizontally works mostly the same as for part 1, for the vertical case I used two recursive functions. The first recurses from the left and right side for each box just to find out if the entire tree can be moved. The second function actually does the moving in a similar recursive structure, but now with the knowledge that all subtrees can actually be moved.
Lots of moving parts, but at least it could very nicely be debugged by printing out the map from the two minimal examples after each round.
Solution
use euclid::{default::*, vec2};
// Common type for both parts. In part 1 all boxes are BoxL.
#[derive(Clone, Copy)]
enum Spot {
Empty,
BoxL,
BoxR,
Wall,
}
impl From<u8> for Spot {
fn from(value: u8) -> Self {
match value {
b'.' | b'@' => Spot::Empty,
b'O' => Spot::BoxL,
b'#' => Spot::Wall,
other => panic!("Invalid spot: {other}"),
}
}
}
fn parse(input: &str) -> (Vec<Vec<Spot>>, Point2D<i32>, Vec<Vector2D<i32>>) {
let (field_s, moves_s) = input.split_once("\n\n").unwrap();
let mut field = Vec::new();
let mut robot = None;
for (y, l) in field_s.lines().enumerate() {
let mut row = Vec::new();
for (x, b) in l.bytes().enumerate() {
row.push(Spot::from(b));
if b == b'@' {
robot = Some(Point2D::new(x, y).to_i32())
}
}
field.push(row);
}
let moves = moves_s
.bytes()
.filter(|b| *b != b'\n')
.map(|b| match b {
b'^' => vec2(0, -1),
b'>' => vec2(1, 0),
b'v' => vec2(0, 1),
b'<' => vec2(-1, 0),
other => panic!("Invalid move: {other}"),
})
.collect();
(field, robot.unwrap(), moves)
}
fn gps(field: &[Vec<Spot>]) -> u32 {
let mut sum = 0;
for (y, row) in field.iter().enumerate() {
for (x, s) in row.iter().enumerate() {
if let Spot::BoxL = s {
sum += x + 100 * y;
}
}
}
sum as u32
}
fn part1(input: String) {
let (mut field, mut robot, moves) = parse(&input);
for m in moves {
let next = robot + m;
match field[next.y as usize][next.x as usize] {
Spot::Empty => robot = next, // Move into space
Spot::BoxL => {
let mut search = next + m;
let can_move = loop {
match field[search.y as usize][search.x as usize] {
Spot::BoxL => {}
Spot::Wall => break false,
Spot::Empty => break true,
Spot::BoxR => unreachable!(),
}
search += m;
};
if can_move {
robot = next;
field[next.y as usize][next.x as usize] = Spot::Empty;
field[search.y as usize][search.x as usize] = Spot::BoxL;
}
}
Spot::Wall => {} // Cannot move
Spot::BoxR => unreachable!(),
}
}
println!("{}", gps(&field));
}
// Transform part 1 field to wider part 2 field
fn widen(field: &[Vec<Spot>]) -> Vec<Vec<Spot>> {
field
.iter()
.map(|row| {
row.iter()
.flat_map(|s| match s {
Spot::Empty => [Spot::Empty; 2],
Spot::Wall => [Spot::Wall; 2],
Spot::BoxL => [Spot::BoxL, Spot::BoxR],
Spot::BoxR => unreachable!(),
})
.collect()
})
.collect()
}
// Recursively find out whether or not the robot can move in direction `dir` from `start`.
fn can_move_rec(field: &[Vec<Spot>], start: Point2D<i32>, dir: Vector2D<i32>) -> bool {
let next = start + dir;
match field[next.y as usize][next.x as usize] {
Spot::Empty => true,
Spot::BoxL => can_move_rec(field, next, dir) && can_move_rec(field, next + vec2(1, 0), dir),
Spot::BoxR => can_move_rec(field, next - vec2(1, 0), dir) && can_move_rec(field, next, dir),
Spot::Wall => false,
}
}
// Recursively execute a move for vertical directions into boxes.
fn do_move(field: &mut [Vec<Spot>], start: Point2D<i32>, dir: Vector2D<i32>) {
let next = start + dir;
match field[next.y as usize][next.x as usize] {
Spot::Empty | Spot::Wall => {}
Spot::BoxL => {
do_move(field, next, dir);
do_move(field, next + vec2(1, 0), dir);
let move_to = next + dir;
field[next.y as usize][next.x as usize] = Spot::Empty;
field[next.y as usize][next.x as usize + 1] = Spot::Empty;
field[move_to.y as usize][move_to.x as usize] = Spot::BoxL;
field[move_to.y as usize][move_to.x as usize + 1] = Spot::BoxR;
}
Spot::BoxR => {
do_move(field, next - vec2(1, 0), dir);
do_move(field, next, dir);
let move_to = next + dir;
field[next.y as usize][next.x as usize - 1] = Spot::Empty;
field[next.y as usize][next.x as usize] = Spot::Empty;
field[move_to.y as usize][move_to.x as usize - 1] = Spot::BoxL;
field[move_to.y as usize][move_to.x as usize] = Spot::BoxR;
}
}
}
fn part2(input: String) {
let (field1, robot1, moves) = parse(&input);
let mut field = widen(&field1);
let mut robot = Point2D::new(robot1.x * 2, robot1.y);
for m in moves {
let next = robot + m;
match field[next.y as usize][next.x as usize] {
Spot::Empty => robot = next, // Move into space
Spot::BoxL | Spot::BoxR if m.y == 0 => {
let mut search = next + m;
let can_move = loop {
match field[search.y as usize][search.x as usize] {
Spot::BoxL | Spot::BoxR => {}
Spot::Wall => break false,
Spot::Empty => break true,
}
search += m;
};
if can_move {
robot = next;
// Shift boxes by array remove/insert
field[next.y as usize].remove(search.x as usize);
field[next.y as usize].insert(next.x as usize, Spot::Empty);
}
}
Spot::BoxL | Spot::BoxR => {
if can_move_rec(&field, robot, m) {
do_move(&mut field, robot, m);
robot = next;
}
}
Spot::Wall => {} // Cannot move
}
}
println!("{}", gps(&field));
}
util::aoc_main!();
Also on github