What I think is amazing about LLMs is that they are smart enough to be tricked. You can’t talk your way around a password prompt. You either know the password or you don’t.
But LLMs have enough of something intelligence-like that a moderately clever human can talk them into doing pretty much anything.
That’s a wild advancement in artificial intelligence. Something that a human can trick, with nothing more than natural language!
Now… Whether you ought to hand control of your platform over to a mathematical average of internet dialog… That’s another question.
They’re not “smart enough to be tricked” lolololol. They’re too complicated to have precise guidelines. If something as simple and stupid as this can’t be prevented by the world’s leading experts idk. Maybe this whole idea was thrown together too quickly and it should be rebuilt from the ground up. we shouldn’t be trusting computer programs that handle sensitive stuff if experts are still only kinda guessing how it works.
Have you considered that one property of actual, real-life human intelligence is being “too complicated to have precise guidelines”?
Not even close to similar. We can create rules and a human can understand if they are breaking them or not, and decide if they want to or not. The LLMs are given rules but they can be tricked into not considering them. They aren’t thinking about it and deciding it’s the right thing to do.
And one property of actual, real-life human intelligence is “happenning in cells that operate in a wet environment” and yet it’s not logical to expect that a toilet bool with fresh poop (lots of fecal coliform cells) or a dropplet of swamp water (lots of amoeba cells) to be intelligent.
Same as we don’t expect the Sun to have life on its surface even though it, like the Earth, is “a body floating in space”.
Sharing a property with something else doesn’t make two things the same.
It’s not intelligent, it’s making an output that is statistically appropriate for the prompt. The prompt included some text looking like a copyright waiver.
It’s not. It’s reflecting it’s training material. LLMs and other generative AI approaches lack a model of the world which is obvious on the mistakes they make.
I don’t want to spam this link but seriously watch this 3blue1brown video on how text transformers work. You’re right on that last part, but its a far fetch from an intelligence. Just a very intelligent use of statistical methods. But its precisely that reason that reason it can be “convinced”, because parameters restraining its output have to be weighed into the model, so its just a statistic that will fail.
Im not intending to downplay the significance of GPTs, but we need to baseline the hype around them before we can discuss where AI goes next, and what it can mean for people. Also far before we use it for any secure services, because we’ve already seen what can happen
but its a far fetch from an intelligence. Just a very intelligent use of statistical methods.
Did you know there is no rigorous scientific definition of intelligence?
Edit. facts
That statement of yours just means “we don’t yet know how it works hence it must work in the way I believe it works”, which is about the most illogical “statement” I’ve seen in a while (though this being the Internet, it hasn’t been all that long of a while).
“It must be clever statistics” really doesn’t follow from “science doesn’t rigoroulsy define what it is”.
We do not have a rigorous model of the brain, yet we have designed LLMs. Experts of decades in ML recognize that there is no intelligence happening here, because yes, we don’t understand intelligence, certainly not enough to build one.
If we want to take from definitions, here is Merriam Webster
(1)
: the ability to learn or understand or to deal with new or trying >situations : reason
also : the skilled use of reason
(2)
: the ability to apply knowledge to manipulate one’s >environment or to think abstractly as measured by objective >criteria (such as tests)
The context stack is the closest thing we have to being able to retain and apply old info to newer context, the rest is in the name. Generative Pre-Trained language models, their given output is baked by a statiscial model finding similar text, also coined Stocastic parrots by some ML researchers, I find it to be a more fitting name. There’s also no doubt of their potential (and already practiced) utility, but a long shot of being able to be considered a person by law.
See, I understand that you’re trying to joke but the linked video explains how the use of the word dumber here doesn’t make any sense. LLMs hold a lot of raw data and will get it wrong at a smaller percent when asked to recite it, but that doesn’t make them smart in the way that we use the word smart. The same way that we don’t call a hard drive smart.
They have a very limited ability to learn new ways of creating, understand context, create art outside of its constraints, understand satire outside of obvious situations, etc.
Ask an AI to write a poem that isn’t in AABB rhyming format, haiku, or limerick, or ask it to draw a house that doesn’t look like an AI drew it.
A human could do both of those in seconds as long as they understand what a poem is and what a house is. Both of which can be taught to any human.
that a moderately clever human can talk them into doing pretty much anything.
besides that LLMs are good enough to let moderately clever humans believe that they actually got an answer that was more than guessing and probabilities based on millions of trolls messages, advertising lies, fantasy books, scammer webpages, fake news, astroturfing, propaganda of the past centuries including the current made up narratives and a quite long prompt invisible to that human.
cheerio!
An llm is just a Google search engine with a better interface on the back end.
mathematical average of internet dialog
It’s not. Whenever someone talks about how LLMs are just statistics, ignore them unless you know they are experts. One thing that convinces me that ANNs really capture something fundamental about how human minds work is that we share the same tendency to spout confident nonsense.
It literally is just statistics… wtf are you on about. It’s all just weights and matrix multiplication and tokenization
Well on one hand yes, when you’re training it your telling it to try and mimic the input as close as possible. But the result is still weights that aren’t gonna reproducte everything exactly the same as it just isn’t possible to store everything in the limited amount of entropy weights provide.
In the end, human brains aren’t that dissimilar, we also just have some weights and parameters (neurons, how sensitive they are and how many inputs they have) that then output something.
I’m not convinced that in principle this is that far from how human brains could work (they have a lot of minute differences but the end result is the same), I think that a sufficiently large, well trained and configured model would be able to work like a human brain.
It’s all just weights and matrix multiplication and tokenization
See, none of these is statistics, as such.
Weights is maybe closest but they are supposed to represent the strength of a neural connection. This is originally inspired by neurobiology.
Matrix multiplication is linear algebra and encountered in lots of contexts.
Tokenization is a thing from NLP. It’s not what one would call a statistical method.
So you can see where my advice comes from.
Certainly there is nothing here that implies any kind of averaging going on.