Avatar

LeixB

LeixB@lemmy.world
Joined
0 posts • 19 comments
Direct message

Haskell

Had some fun with arrows.

import Control.Arrow
import Control.Monad

main = getContents >>= print . (part1 &&& part2) . fmap (fmap read . words) . lines

part1 = length . filter isSafe
part2 = length . filter (any isSafe . removeOne)

isSafe = ap (zipWith (-)) tail >>> (all (between 1 3) &&& all (between (-3) (-1))) >>> uncurry (||)
 where
  between a b = (a <=) &&& (<= b) >>> uncurry (&&)

removeOne [] = []
removeOne (x : xs) = xs : fmap (x :) (removeOne xs)
permalink
report
reply

Haskell

import Control.Arrow
import Control.Monad
import Data.List
import Data.Map

part1 [a, b] = sum $ abs <$> zipWith (-) (sort a) (sort b)
part2 [a, b] = sum $ ap (zipWith (*)) (fmap (flip (findWithDefault 0) (freq b))) a
  where
    freq = fromListWith (+) . fmap (,1)

main = getContents >>= (print . (part1 &&& part2)) . transpose . fmap (fmap read . words) . lines
permalink
report
reply

Haskell

module Main where

import Control.Arrow hiding ((+++))
import Data.Char
import Data.Functor
import Data.Maybe
import Text.ParserCombinators.ReadP hiding (get)
import Text.ParserCombinators.ReadP qualified as P

data Op = Mul Int Int | Do | Dont deriving (Show)

parser1 :: ReadP [(Int, Int)]
parser1 = catMaybes <$> many ((Just <$> mul) <++ (P.get $> Nothing))

parser2 :: ReadP [Op]
parser2 = catMaybes <$> many ((Just <$> operation) <++ (P.get $> Nothing))

mul :: ReadP (Int, Int)
mul = (,) <$> (string "mul(" *> (read <$> munch1 isDigit <* char ',')) <*> (read <$> munch1 isDigit <* char ')')

operation :: ReadP Op
operation = (string "do()" $> Do) +++ (string "don't()" $> Dont) +++ (uncurry Mul <$> mul)

foldOp :: (Bool, Int) -> Op -> (Bool, Int)
foldOp (_, n) Do = (True, n)
foldOp (_, n) Dont = (False, n)
foldOp (True, n) (Mul a b) = (True, n + a * b)
foldOp (False, n) _ = (False, n)

part1 = sum . fmap (uncurry (*)) . fst . last . readP_to_S parser1
part2 = snd . foldl foldOp (True, 0) . fst . last . readP_to_S parser2

main = getContents >>= print . (part1 &&& part2)
permalink
report
reply

Haskell

import Control.Arrow
import Data.Array.Unboxed
import Data.List

type Pos = (Int, Int)
type Board = Array Pos Char
data Dir = N | NE | E | SE | S | SW | W | NW

target = "XMAS"

parse s = listArray ((1, 1), (n, m)) [l !! i !! j | i <- [0 .. n - 1], j <- [0 .. m - 1]]
  where
    l = lines s
    (n, m) = (length $ head l, length l)

move N = first pred
move S = first succ
move E = second pred
move W = second succ
move NW = move N . move W
move SW = move S . move W
move NE = move N . move E
move SE = move S . move E

check :: Board -> Pos -> Int -> Dir -> Bool
check b p i d =
    i >= length target
        || ( inRange (bounds b) p
                && (b ! p) == (target !! i)
                && check b (move d p) (succ i) d
           )

checkAllDirs :: Board -> Pos -> Int
checkAllDirs b p = length . filter (check b p 0) $ [N, NE, E, SE, S, SW, W, NW]

check2 :: Board -> Pos -> Bool
check2 b p =
    all (inRange (bounds b)) moves && ((b ! p) == 'A') && ("SSMM" `elem` rotations)
  where
    rotations = rots $ (b !) <$> moves
    moves = flip move p <$> [NE, SE, SW, NW]

    rots xs = init $ zipWith (++) (tails xs) (inits xs)

part1 b = sum $ checkAllDirs b <$> indices b
part2 b = length . filter (check2 b) $ indices b

main = getContents >>= print . (part1 &&& part2) . parse
permalink
report
reply

Haskell

I should probably have used sortBy instead of this ad-hoc selection sort.

import Control.Arrow
import Control.Monad
import Data.Char
import Data.List qualified as L
import Data.Map
import Data.Set
import Data.Set qualified as S
import Text.ParserCombinators.ReadP

parse = (,) <$> (fromListWith S.union <$> parseOrder) <*> (eol *> parseUpdate)
parseOrder = endBy (flip (,) <$> (S.singleton <$> parseInt <* char '|') <*> parseInt) eol
parseUpdate = endBy (sepBy parseInt (char ',')) eol
parseInt = read <$> munch1 isDigit
eol = char '\n'

verify :: Map Int (Set Int) -> [Int] -> Bool
verify m = and . (zipWith fn <*> scanl (flip S.insert) S.empty)
  where
    fn a = flip S.isSubsetOf (findWithDefault S.empty a m)

getMiddle = ap (!!) ((`div` 2) . length)

part1 m = sum . fmap getMiddle

getOrigin :: Map Int (Set Int) -> Set Int -> Int
getOrigin m l = head $ L.filter (S.disjoint l . preds) (S.toList l)
  where
    preds = flip (findWithDefault S.empty) m

order :: Map Int (Set Int) -> Set Int -> [Int]
order m s
  | S.null s = []
  | otherwise = h : order m (S.delete h s)
    where
      h = getOrigin m s

part2 m = sum . fmap (getMiddle . order m . S.fromList)

main = getContents >>= print . uncurry runParts . fst . last . readP_to_S parse
runParts m = L.partition (verify m) >>> (part1 m *** part2 m)
permalink
report
reply

Haskell

import Control.Arrow
import Data.Char
import Text.ParserCombinators.ReadP

numP = read <$> munch1 isDigit
parse = endBy ((,) <$> (numP <* string ": ") <*> sepBy numP (char ' ')) (char '\n')

valid n [m] = m == n
valid n (x : xs) = n > 0 && valid (n - x) xs || (n `mod` x) == 0 && valid (n `div` x) xs

part1 = sum . fmap fst . filter (uncurry valid . second reverse)

concatNum r = (+r) . (* 10 ^ digits r)
    where
        digits = succ . floor . logBase 10 . fromIntegral

allPossible [n] = [n]
allPossible (x:xs) = ((x+) <$> rest) ++ ((x*) <$> rest) ++ (concatNum x <$> rest)
    where
        rest = allPossible xs

part2 = sum . fmap fst . filter (uncurry elem . second (allPossible . reverse))

main = getContents >>= print . (part1 &&& part2) . fst . last . readP_to_S parse
permalink
report
reply

I use neovim with haskell-tools.nvim plugin. For ghc, haskell-language-server and others I use nix which, among other benefits makes my development environment reproducible and all haskellPackages are built on the same version so there are no missmatches.

But, as much as I love nix, there are probably easier ways to setup your environment.

permalink
report
parent
reply

Love the fold on the list monad to apply the operations.

permalink
report
parent
reply

Haskell

import Control.Arrow
import Control.Monad
import Data.List
import Data.Map qualified as M

type Pos = [Int]

parse :: String -> (Pos, [(Char, Pos)])
parse s = ([n, m], [(c, [i, j]) | i <- [0 .. n], j <- [0 .. m], c <- [l !! i !! j], c /= '.'])
  where
    l = lines s
    n = pred $ length $ head l
    m = pred $ length l

buildMap :: [(Char, Pos)] -> M.Map Char [Pos]
buildMap = M.fromListWith (++) . fmap (second pure)

allPairs :: [Pos] -> [(Pos, Pos)]
allPairs l = [(x, y) | (x : xs) <- tails l, y <- xs]

add = zipWith (+)
sub = zipWith (-)

antinodes :: Pos -> Pos -> [Pos]
antinodes a b = [a `sub` ab, b `add` ab]
  where
    ab = b `sub` a

inBounds [x', y'] [x, y] = x >= 0 && y >= 0 && x <= x' && y <= y'

antinodes' :: Pos -> Pos -> Pos -> [Pos]
antinodes' l a b = al ++ bl
  where
    ab = b `sub` a
    al = takeWhile (inBounds l) $ iterate (`sub` ab) a
    bl = takeWhile (inBounds l) $ iterate (`add` ab) b

part1 l = length . nub . filter (inBounds l) . concat . M.elems . fmap (allPairs >=> uncurry antinodes)
part2 l = length . nub . concat . M.elems . fmap (allPairs >=> uncurry (antinodes' l))

main = getContents >>= print . (uncurry part1 &&& uncurry part2) . second buildMap . parse
permalink
report
reply

Haskell

Quite messy

{-# LANGUAGE LambdaCase #-}

module Main where

import Control.Applicative
import Control.Arrow
import Control.Monad
import Control.Monad.ST
import Control.Monad.Trans
import Control.Monad.Trans.Maybe
import Data.Array.ST
import Data.Array.Unboxed
import Data.Char
import Data.List
import Data.Maybe

parse = zip ids . fmap digitToInt . takeWhile (/= '\n')

ids = intersperse Nothing $ Just <$> [0 ..]

expand :: [(a, Int)] -> [a]
expand = foldMap (uncurry $ flip replicate)

process l = runSTArray $ do
    arr <- newListArray (1, length l) l
    getBounds arr >>= uncurry (go arr)
  where
    go arr iL iR = do
        (iL', iR') <- advance arr (iL, iR)
        if iL' < iR'
            then swap arr iL' iR' *> go arr iL' iR'
            else return arr

swap arr i j = do
    a <- readArray arr i
    readArray arr j >>= writeArray arr i
    writeArray arr j a

advance arr (h, t) = (,) <$> advanceHead arr h <*> advanceTail arr t
  where
    advanceHead arr i =
        readArray arr i >>= \case
            Nothing -> return i
            _ -> advanceHead arr (succ i)

    advanceTail arr i =
        readArray arr i >>= \case
            Nothing -> advanceTail arr (pred i)
            _ -> return i

checksum = sum . zipWith (*) [0 ..]

process2 l = runSTArray $ do
    let idxs = scanl' (+) 1 $ snd <$> l
        iR = last idxs
    arr <- newArray (1, iR) Nothing
    forM_ (zip idxs l) $ \(i, v) -> writeArray arr i (Just v)

    runMaybeT $ go arr iR

    return arr
  where
    go :: MArr s -> Int -> MaybeT (ST s) ()
    go arr iR = do
        (i, sz) <- findVal arr iR

        (findGap arr sz 1 >>= move arr i) <|> return ()

        go arr $ pred i

type MArr s = STArray s Int (Maybe (Maybe Int, Int))

findGap :: MArr s -> Int -> Int -> MaybeT (ST s) Int
findGap arr n i = do
    mx <- lift $ snd <$> getBounds arr
    guard $ i <= mx
    ( do
            Just (Nothing, v) <- lift (readArray arr i)
            guard $ v >= n
            hoistMaybe $ Just i
        )
        <|> findGap arr n (succ i)

findVal :: MArr s -> Int -> MaybeT (ST s) (Int, Int)
findVal arr i = do
    guard $ i >= 1
    lift (readArray arr i) >>= \case
        Just (Just _, sz) -> hoistMaybe $ Just (i, sz)
        _ -> findVal arr $ pred i

move arr iVal iGap = do
    guard $ iGap < iVal

    Just (Nothing, gap) <- lift $ readArray arr iGap
    v@(Just (Just _, sz)) <- lift $ readArray arr iVal
    lift . writeArray arr iVal $ Just (Nothing, sz)
    lift $ writeArray arr iGap v

    when (gap > sz) . lift . writeArray arr (iGap + sz) $ Just (Nothing, gap - sz)

part1 = checksum . catMaybes . elems . process . expand
part2 = checksum . fmap (fromMaybe 0) . expand . catMaybes . elems . process2

main = getContents >>= print . (part1 &&& part2) . parse
permalink
report
reply