Day 11: Plutonian Pebbles
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
Haskell
Yay, mutation! Went down the route of caching the expanded lists of stones at first. Oops.
import Data.IORef
import Data.Map.Strict (Map)
import Data.Map.Strict qualified as Map
blink :: Int -> [Int]
blink 0 = [1]
blink n
| s <- show n,
l <- length s,
even l =
let (a, b) = splitAt (l `div` 2) s in map read [a, b]
| otherwise = [n * 2024]
countExpanded :: IORef (Map (Int, Int) Int) -> Int -> [Int] -> IO Int
countExpanded _ 0 = return . length
countExpanded cacheRef steps = fmap sum . mapM go
where
go n =
let key = (n, steps)
computed = do
result <- countExpanded cacheRef (steps - 1) $ blink n
modifyIORef' cacheRef (Map.insert key result)
return result
in readIORef cacheRef >>= maybe computed return . (Map.!? key)
main = do
input <- map read . words <$> readFile "input11"
cache <- newIORef Map.empty
mapM_ (\steps -> countExpanded cache steps input >>= print) [25, 75]
Does the IORef go upwards the recursion tree? If you modify the IORef at some depth of 15, does the calling function also receive the update, is there also a Non-IO-Ref?
The IORef is like a mutable box you can stick things in, so readIORef
returns whatever was last put in it (in this case using modifyIORef'
). “last” makes sense here because operations are sequenced thanks to the IO monad, so yes: values get carried back up the tree to the caller. There’s also STRef
for the ST monad, or I could have used the State monad which (kind of) encapsulates a single ref.
C#
public class Day11 : Solver
{
private long[] data;
private class TreeNode(TreeNode? left, TreeNode? right, long value) {
public TreeNode? Left = left;
public TreeNode? Right = right;
public long Value = value;
}
private Dictionary<(long, int), long> generation_length_cache = [];
private Dictionary<long, TreeNode> subtree_pointers = [];
public void Presolve(string input) {
data = input.Trim().Split(" ").Select(long.Parse).ToArray();
List<TreeNode> roots = data.Select(value => new TreeNode(null, null, value)).ToList();
List<TreeNode> last_level = roots;
subtree_pointers = roots.GroupBy(root => root.Value)
.ToDictionary(grouping => grouping.Key, grouping => grouping.First());
for (int i = 0; i < 75; i++) {
List<TreeNode> next_level = [];
foreach (var node in last_level) {
long[] children = Transform(node.Value).ToArray();
node.Left = new TreeNode(null, null, children[0]);
if (subtree_pointers.TryAdd(node.Left.Value, node.Left)) {
next_level.Add(node.Left);
}
if (children.Length <= 1) continue;
node.Right = new TreeNode(null, null, children[1]);
if (subtree_pointers.TryAdd(node.Right.Value, node.Right)) {
next_level.Add(node.Right);
}
}
last_level = next_level;
}
}
public string SolveFirst() => data.Select(value => GetGenerationLength(value, 25)).Sum().ToString();
public string SolveSecond() => data.Select(value => GetGenerationLength(value, 75)).Sum().ToString();
private long GetGenerationLength(long value, int generation) {
if (generation == 0) { return 1; }
if (generation_length_cache.TryGetValue((value, generation), out var result)) return result;
TreeNode cur = subtree_pointers[value];
long sum = GetGenerationLength(cur.Left.Value, generation - 1);
if (cur.Right is not null) {
sum += GetGenerationLength(cur.Right.Value, generation - 1);
}
generation_length_cache[(value, generation)] = sum;
return sum;
}
private IEnumerable<long> Transform(long arg) {
if (arg == 0) return [1];
if (arg.ToString() is { Length: var l } str && (l % 2) == 0) {
return [int.Parse(str[..(l / 2)]), int.Parse(str[(l / 2)..])];
}
return [arg * 2024];
}
}
I had a very similar take on this problem, but I was not caching the results of a blink for a single stone, like youre doing with subtree_pointers
. I tried adding that to my solution, but it didn’t make an appreciable difference. I think that caching the lengths is really the only thing that matters.
C#
static object Solve(Input i, int numBlinks)
{
// This is a cache of the tuples of (stoneValue, blinks) to
// the calculated count of their child stones.
var lengthCache = new Dictionary<(long, int), long>();
return i.InitialStones
.Sum(stone => CalculateUltimateLength(stone, numBlinks, lengthCache));
}
static long CalculateUltimateLength(
long stone,
int numBlinks,
IDictionary<(long, int), long> lengthCache)
{
if (numBlinks == 0) return 1;
if (lengthCache.TryGetValue((stone, numBlinks), out var length)) return length;
length = Blink(stone)
.Sum(next => CalculateUltimateLength(next, numBlinks - 1, lengthCache));
lengthCache[(stone, numBlinks)] = length;
return length;
}
static long[] Blink(long stone)
{
if (stone == 0) return [1];
var stoneText = stone.ToString();
if (stoneText.Length % 2 == 0)
{
var halfLength = stoneText.Length / 2;
return
[
long.Parse(stoneText.Substring(0, halfLength)),
long.Parse(stoneText.Substring(halfLength)),
];
}
return [stone * 2024];
}
Haskell
Sometimes I want something mutable, this one takes 0.3s, profiling tells me 30% of my time is spent creating new objects. :/
import Control.Arrow
import Data.Map.Strict (Map)
import qualified Data.Map.Strict as Map
import qualified Data.Maybe as Maybe
type StoneCache = Map Int Int
type BlinkCache = Map Int StoneCache
parse :: String -> [Int]
parse = lines >>> head >>> words >>> map read
memoizedCountSplitStones :: BlinkCache -> Int -> Int -> (Int, BlinkCache)
memoizedCountSplitStones m 0 _ = (1, m)
memoizedCountSplitStones m i n
| Maybe.isJust maybeMemoized = (Maybe.fromJust maybeMemoized, m)
| n == 0 = do
let (r, rm) = memoizedCountSplitStones m (pred i) (succ n)
let rm' = cacheWrite rm i n r
(r, rm')
| digitCount `mod` 2 == 0 = do
let (r1, m1) = memoizedCountSplitStones m (pred i) firstSplit
let (r2, m2) = memoizedCountSplitStones m1 (pred i) secondSplit
let m' = cacheWrite m2 i n (r1+r2)
(r1 + r2, m')
| otherwise = do
let (r, m') = memoizedCountSplitStones m (pred i) (n * 2024)
let m'' = cacheWrite m' i n r
(r, m'')
where
secondSplit = n `mod` (10 ^ (digitCount `div` 2))
firstSplit = (n - secondSplit) `div` (10 ^ (digitCount `div` 2))
digitCount = succ . floor . logBase 10 . fromIntegral $ n
maybeMemoized = cacheLookup m i n
foldMemoized :: Int -> (Int, BlinkCache) -> Int -> (Int, BlinkCache)
foldMemoized i (r, m) n = (r + r2, m')
where
(r2, m') = memoizedCountSplitStones m i n
cacheWrite :: BlinkCache -> Int -> Int -> Int -> BlinkCache
cacheWrite bc i n r = Map.adjust (Map.insert n r) i bc
cacheLookup :: BlinkCache -> Int -> Int -> Maybe Int
cacheLookup bc i n = do
sc <- bc Map.!? i
sc Map.!? n
emptyCache :: BlinkCache
emptyCache = Map.fromList [ (i, Map.empty) | i <- [1..75]]
part1 = foldl (foldMemoized 25) (0, emptyCache)
>>> fst
part2 = foldl (foldMemoized 75) (0, emptyCache)
>>> fst
main = getContents
>>= print
. (part1 &&& part2)
. parse
Some nice monadic code patterns going on there, passing the cache around! (You might want to look into the State monad if you haven’t come across it before)
Thank you for the hint, I wouldn’t have recognized it because I haven’t yet looked into it, I might try it this afternoon if I find the time, I could probably put both the Cache and the current stone count into the monad state?
And now we get into the days where caching really is king. My first attempt didn’t go so well, I tried to handle the full list result as one cache step, instead of individually caching the result of calculating each stone per step.
I think my original attempt is still calculating at home, but I finished up this much better version on the trip to work.
All hail public transport.
C#
List<long> stones = new List<long>();
public void Input(IEnumerable<string> lines)
{
stones = string.Concat(lines).Split(' ').Select(v => long.Parse(v)).ToList();
}
public void Part1()
{
var expanded = TryExpand(stones, 25);
Console.WriteLine($"Stones: {expanded}");
}
public void Part2()
{
var expanded = TryExpand(stones, 75);
Console.WriteLine($"Stones: {expanded}");
}
public long TryExpand(IEnumerable<long> stones, int steps)
{
if (steps == 0)
return stones.Count();
return stones.Select(s => TryExpand(s, steps)).Sum();
}
Dictionary<(long, int), long> cache = new Dictionary<(long, int), long>();
public long TryExpand(long stone, int steps)
{
var key = (stone, steps);
if (cache.ContainsKey(key))
return cache[key];
var result = TryExpand(Blink(stone), steps - 1);
cache[key] = result;
return result;
}
public IEnumerable<long> Blink(long stone)
{
if (stone == 0)
{
yield return 1;
yield break;
}
var str = stone.ToString();
if (str.Length % 2 == 0)
{
yield return long.Parse(str[..(str.Length / 2)]);
yield return long.Parse(str[(str.Length / 2)..]);
yield break;
}
yield return stone * 2024;
}
Dart
I really wish Dart had memoising built in. Maybe the new macro feature will allow this to happen, but in the meantime, here’s my hand-rolled solution.
import 'package:collection/collection.dart';
var counter_ = <(int, int), int>{};
int counter(s, [r = 75]) => counter_.putIfAbsent((s, r), () => _counter(s, r));
int _counter(int stone, rounds) =>
(rounds == 0) ? 1 : next(stone).map((e) => counter(e, rounds - 1)).sum;
List<int> next(int s) {
var ss = s.toString(), sl = ss.length;
if (s == 0) return [1];
if (sl.isOdd) return [s * 2024];
return [ss.substring(0, sl ~/ 2), ss.substring(sl ~/ 2)]
.map(int.parse)
.toList();
}
solve(List<String> lines) => lines.first.split(' ').map(int.parse).map(counter).sum;