cross-posted from: https://lemmy.bestiver.se/post/123708
It’s great to see innovative products like the OpenWrt One empowering users with more control and freedom over their tech. Having a device that’s unbrickable and fully customizable is definitely a step in the right direction. Speaking of customization, for those who enjoy editing their photos on the go, the Lightroom MOD APK offers a similar level of flexibility. Click here to explore more about this app. With it, users can unlock premium features for advanced editing, allowing you to personalize your photos to your heart’s content without any limitations. Just like the OpenWrt One, it gives users full control, but in the world of photography!
Very weird ethernet setup. Gives you a 2.5g port so you could take advantage of the faster fiber many people have access to now, but only a 1g port so you can’t even use the benefits of the faster network on your wired LAN. Not something most people’s internet connections care about, but a weird thing to include regardless; it would have been better to leave them both 1g ports and shave $5+ off the sales price.
I’m sure this is a limit of the commodity chipset but it honestly doesn’t have a place in the network I’m planning to build out as fully 2.5g compatible next year.
The included MT7976C wifi can theoretically saturate the 2.5 Gbps uplink on its own. The use case is overall throughput for a mixture of wired and wireless devices.
It doesn’t make sense to me to future proof wifi but not wired for $5 more, but maybe it makes sense to people in rural places
Let’s be realistic. How many devices support a mainline version of OpenWRT and have more than one 2.5 Gbe port?
This thing is primarily a wifi router and access point. The available Ethernet ports, which are limited to what the chipset supports, are going to be more than sufficient for the majority of users.
If your main concern is wired throughput to the Internet, you are not the target audience for OpenWrt. The literal point of the OpenWrt project was to be an open source firmware for the WRT54G wireless router. The project has of course grown since then, but that is still its primary intended use case.
You are much more likely to find what you need in pfSense/OPNsense/etc, and on more powerful hardware. I would be way more concerned with the fact that it only has 1 GB RAM.
But if you still want to take that stance, there is nothing stopping you from reconfiguring the 2.5 Gbe port as a VLAN trunk and hanging it off a managed switch. Put your uplink in one VLAN and your LAN in another. That is going to be more than sufficient to saturate the 1 Gbps fiber connection that most people have (or at least asymmetrically saturate the 2 Gbps connection that some people have).
Or if you don’t like that, just do the routing on the switch. If your primary concern is wired throughput, you’ll probably already be doing that anyway. Then just use this thing as an AP, in which case the one port is sufficient.
I’m struggling to think what one can even do with just two ethernet ports of different speeds. It’s begging to be used as a gateway, VPN or firewall but you can’t because you’ll top out at 1G anyway. And assuming one of them is the LAN side, supposedly it’ll be going to a switch so the router will never see LAN traffic anyway, only stuff through it which hits the bandwidth limitation.
I guess technically one could bond the WiFi and 1G link to make use of the 2.5G link? Or as an AP like it’s got 2.5G upstream and passes through another AP down the line using the 1G port.
Very questionable specs.
E: it occured to me this looks like a potentially really good standalone AP if you give it 2.5G upstream and then branch off to another device down the line like some Ubiquiti ones do. But the form factor is ugly as hell to be mounted on a ceiling…
Usually the routers you install OpenWRT on are really a CPU with one port to a VLAN-capable switch, and the port labeled WAN on the device is just VLAN’d separately by default. One cool thing OpenWRT lets you do on “normal” hardware is change the VLAN settings on the switch ports which are not accessible under stock firmware.
But if they are shipping “just” the router piece and making people go get their own VLAN-capable switch, I’m not sure what hardware exactly they expect people to use? And I’m not sure what being connected to the switch over one real 2.5G cable is going to do to LAN/WAN throughput, vs. how a “normal” router ties the CPU into the switch through means not known to mortal minds. Maybe it is just as good, maybe it is a huge bottleneck. It is definitely going to add cost over the $89 sticker price.
But if most people are just going to run fiber modem straight to WiFi, maybe this is the right config actually?
The key there is the switch does most of the work in hardware, so you can have 1G going between all ports with no CPU usage, so the internal 1G port doesn’t matter as much, and the hardware acceleration lets it efficiently handle routing across VLANs without involving much of the internal port. Those internal switches can usually handle VLANs and basic NAT nesrly entirely on its own.
With a single external 2.5G port you lose that because your traffic will have to go in the router and back out to the switch to cross VLANs, so it’s basically a 1.25G link. And it needs to be a managed switch too since the router doesn’t come with a built-in one anymore. Best you can do is software VLANs but the other device will need to also use the VLAN explicitly in that case, as there’s no switch to give you untagged ports.
You can run a router with just one Ethernet port on it. That’s what subnets are for.
Also, if they only had two gigabit ports with WiFi, they’d be directly competing with the nano-pi for market share. https://www.friendlyelec.com/index.php?route=product/product&product_id=296
Still, I’m actually with you. That is a weird choice to make.
s/subnets/vlans/
It’s not a great idea to have multiple layer 3’s sharing the same layer 2.
I just got upgraded to 10 Gbit internet the other week and was looking at routers, and it seems to be a surprisingly common configuration (or routers with 10 Gbit WAN and 2.5 Gbit LAN ports). I think router manufacturers are banking on 99% of people only caring about Wi-Fi and then being fooled by those “up to 7000 mbit over wifi!” numbers. And then due to scale those are the only chipsets that are affordable.
Yeah. Tbf at higher bitrates like 10G, if you really want to take full advantage of that insane amount of bandwidth, you really need to have a dedicated router/firewall machine, then use a 10G switched network with a standalone AP and then ethernet to as many devices as you can reasonably reach. 10G is expensive to use, sorry, and your desktops will likely need new NIC pcie cards too if you want to be able to really push 10G to it’s limits.
My home network philosophy has always been that any one device (wifi devices excluded) should be able to use the full capabilities of the network. But that has always been with comparatively shit home internet.
If you have a very large network with a lot of devices and users, then it can be better to just build out 2.5G to each device but have 10G backhaul to your modem just so the bandwidth can be more evenly divided.
Yeah after doing a bunch of testing what I settled on was a used ThinkCentre Tiny with a dual 10G NIC running OpenWRT, and then a cheap Chinese PoE switch with 4x2.5G ports and 2x10G SFP+ ports. Router and my main computer on 10G, NAS and Wi-Fi (UniFi AP that I’ve had since before) on 2.5G, and then everything else is on a separate 1G switch.
For a home network, 2.5G LAN is really the sweet spot. The hardware is affordable now, the spinny drives in my NAS can’t realistically do more than 200 MB/s for a real workload, there are no single-stream downloads online that are going to be faster (the fastest “normal” download I’ve seen is 2Gbit from Microsoft)
Yeah, you’d use the 1G port for uplink and 2.5G for internal network use, assuming most of your traffic is internal (e.g. streaming from a NAS or something).
But yeah, the port setup is weird. I’d honestly rather have all 1G ports and have more of them (w/ active PoE) than a single 2.5G port.
Other routers have run OpenWRT straight from the factory before (various GL.iNet devices come to mind, not to mention the OG Linksys WRT54G – it may not have been called “OpenWRT” as such, but OpenWRT descends from that firmware).
In what way is this device “designed specifically” for OpenWRT that those were not?
Linksys WRT54G
The Linksys WRT54G did not run OpenWrt by default and the original OS does not even remotely resemble OpenWrt. What OpenWrt did use from the original OS was the Broadcom wireless driver because it was closed source (and a similar kernel version, so the driver could be used), since there was no driver in the mainline kernel.
But to try to answer the question, this device has been designed by the OpenWrt developers to fit their needs (and their users needs). Other routers running some variant of OpenWrt on them by default were designed by companies unrelated to the project. They most likely used OpenWrt because it was convenient to them. Their intentions weren’t usually the same as the OpenWrt team’s (repairability, easy to unbrick, etc.). Not that there is anything wrong with that. I like GL.Inet routers.
I fail to see how a single port GbE LAN would suffice when other devices got more than that.
I would prefer more LAN ports as well, but how does that relate to what I said? I never said they intended to build or should build a device that fits all use-cases.
So it’s Banana Pi.
Begs me to ask why, out of all their models to base on, they gotta pick the one with a 2.5GbE port and a single GbE port. I am fully aware they have similar board with four GbE ports instead.
In sure the idea is that anyone who cares enough to buy specific hardware for openWRT is going to almost certainly have a standalone ethernet switch with far more than 4 devices plugged in.
This would be potential impulse buy territory if it was 2x2.5… but a mix of 1 and 2.5 is frankly a tad baffling
And why only 2 ports? I’m fine w/ being limited to 1gbps uplink because that’s probably all I’m going to need in the near future, but only having one other port means I definitely need a switch to start using it. I currently use three ports:
- uplink
- wifi AP
- everything else
And having more is always better. Ideally they’d provide 5 ports, and have at least one be PoE (ideally all 5), and I’d be 100% okay with paying a bit more for it.
I’d rather have more ports and have them be PoE but limited to gigabit speeds than only having one 2.5G port w/o PoE. I could maybe be okay with only two ports if one was 10G, but 2.5G is not enough to make it worth redoing my switch setup.
What’s wrong with having a switch? And why build in capability that people aren’t necessarily gonna use?
The intent of this is to be a cheap but capable homelab router. Building in more ports / integrating a managed or unmanaged switch / adding PoE is only going to drive up cost. BYO is absolutely the answer to “I want more ports” here.
Literally the ONLY thing they would need to do to make this perfect is to make the LAN port upgradable to 2.5G - anything past that and people are probably going to be looking at more serious enterprise-grade hardware anyways.
Having at least one more port makes debugging a lot easier, and it also opens the door to port-based VLANs. If they had three ports, it would be infinitely more useful to me, and any more ports than that is just icing on the cake.
But only two ports means you have to get a separate switch unless you’ll only ever have the one ethernet device.
In terms of tradeoffs, drop the Wi-Fi capability entirely and add more physical ports. I doubt the Wi-Fi module is any good (doesn’t even do 6GHz), and it doesn’t seem to be replaceable either. If you’re going for a home-lab setup, you’re going to want more ports. If you’re going for a regular home user use-case, you’d prefer a better Wi-Fi card. Maybe sell two models, one w/ better Wi-Fi (full 6E standard) and one w/ more ports and no Wi-Fi.