$60k per MW or $210M for a nuclear reactors worth (3.5GW). Sure… the reactor will go 24/7 (between maintenance and refuelling down times, and will use less land (1.75km² Vs ~40km²) but at 1% of the cost, why are we still talking about nuclear.
(I’m using the UKs Hinckley Point C power station as reference)
Because there are nights there are winters there are cloudy and rainy days, and there are no batteries capable of balancing all of these issues. Also when you account for those batteries the cost is going to shift a bit. So we need to invest in nuclear and renewables and batteries. So we can start getting rid of coal and gas plants.
But Germany has no space for nuclear waste. They haven’t been able to bury the last batch for over 30 years. And the one that they buried most recently began to leak radioactivity into ground water.
And… why give Russia more military target opportunities?
I’m not a rabid anti-nuclear, but there are somethings that are often left out of the pricing. One is the exorbitant price of storage of spent fuel although I seem to remember that there is some nuclear tech that can use nuclear waste as at least part of it’s fuel (Molten salt? Pebble? maybe an expert can chime in). There is also the human greed factor. Fukushima happened because they built the walls to the highest recorded tsunami in the area, to save on concrete. A lot of civil engineering projects have a 150% overprovision over the worst case calculations. Fukushima? just for the worst case recorded, moronic corporate greed. The human factor tends to be the biggest danger here.
The batteries needed are a lot less than you might think. Solar doesn’t work at night and the wind doesn’t always blow, but we have tons of regional weather data about how they overlap. From that, it’s possible to calculate the maximum historical lull where neither are providing enough. You then add enough storage to handle double that time period, and you’re good.
Getting 95% coverage with this is a very achievable goal. That last 5% takes a lot more effort, but getting to 95% would be a massive reduction in CO2 output.
Also when you account for those batteries the cost is going to shift a bit.
You better be bringing units if you’re going to be claiming this.
Still less than half of the LCOE of nuclear when storage is added: https://www.statista.com/statistics/1475611/global-levelized-cost-of-energy-components-by-technology/
Given that both solar and storage costs are trending downwards while nuclear is not, this basically kills any argument for nuclear in the future. It’s not viable on its face - renewables + storage is the definitive future.
And cheaper solar and batteries permits cheaper Hydrogen which provides unlimited and 100% resilient renewable power, and still cheaper than nuclear.
A MW of solar averages out to about .2 MWh per hour. A MW of nuclear averages about .9 MWh per hour.
But even so as the UK does it, nuclear power isn’t worth it. France and China are better examples since they both picked a few designs and mass produced them.
China’s experience indicates you can mass produce nuclear relatively cheaply and quickly, having built 35 out of 57GW in the last decade, and another 88GW on the way, however it’s not nearly as quick to expand as solar, wind, and fossil fuels.
In many regions solar capacity factor is much higher than 20%; for example, the entire US. https://atb.nrel.gov/electricity/2021/utility-scale_pv
Nuclear actually around 0.6, because 1/3 is always off for repair and control.
Maybe in the UK where each plant is basically unique instead of having improvements from all the previous iterations. In the US it’s around 93%. I don’t know how to search China or France’s numbers, but I suspect they’re similar or better.
MW/h
There is MW which is a unit of power and then there is MWh which is a unit of energy, but what is MW/h supposed to mean?
You have to have some base load it can’t be all renewable because renewables just aren’t reliable enough. The only way to get 100% reliability from solar for example would be to build a ring of panels around the equator (type 1 civilization stuff).
Of all the options for base load, nuclear is the least worst, at least until we can get Fusion online, but you know that’s always 20 years away.
That’s why we have hydro. Its a giant battery. We can also make synthetic methane.
We absolutely can do 100% renewable.
Hydro is great but it’s not clean it requires you to flood vast areas of land, it’s quite damaging to wildlife.
It is also highly situation dependent, you be quiet exactly the right kind of geography in order to be able to build hydro and then you require that there is no one living in the affected area otherwise it gets very expensive very quickly assuming you’re allowed to do it at all.
We can’t manufacture and install enough solar farms and storage to get us off of fossil fuel within 20 years and more importantly available investment capital isn’t the limiting factor.
Investments in nuclear power are not taking money away from investments in solar.
We can do both, and it gets us off fossil fuels sooner.
Investments in nuclear power are not taking money away from investments in solar.
This is interesting. Why do you think that?
I would disagree, because is see investment capital as finite. There are only so many investors able to operate at infrastructure scales. And therefore I see nuclear’s true cost as opportunity cost.
From an investor perspective, solar farm projects are a slam dunk once they reach the point of being ready to purchase panels.
There are a lot of things to line up to build a grid-scale solar farm before you get to that point. You need to acquire (the rights to) the land, get permits to connect to the grid, which usually includes construction of the new transmission line to the grid. You need to line up panels from a manufacturer (who in turn has supply chains to manage), and labor to install it. And 100 other things. It typically takes a few years of planning, but get all that in order and it’s a small percentage of the total expense of the project.
At the point you need to do the larger capital raise needed to buy the panels and hire the labour it’s a slam dunk. The project can be completed typically within 12-24 months so there’s a quick process to get to generating revenue for investors, and because solar has gotten so cheap it doesn’t take long to see positive ROI. It’s not like electricity demand is going away either. It’s a very safe bet, once all the pieces are lined up, and not difficult to raise funds once you get to the point of needing the big money.
People on Lemmy/Reddit have this mental model that there’s a fixed budget for investment in the energy transition. If that was the case, then yes it would make sense to go all in on the cheapest technology option.
But that’s how it works. Energy projects are competing with the global market for investment capital with non-energy related investments and there’s no shortage of wealth wanting to throw money at a solar project because they’re low risk/high ROI.
Nuclear projects are a different story, long timelines from construction to revenue generation and high upfront capital costs make them unfavourable investments, they generally need government support to derisk the investment before investors jump on board. Which the governments are reluctant to do because they lack a mandate to do so from the populace. In part because of this mindset that nuclear investment impedes solar or wind investments.
Total solar manufacturing capability has been increasing exponentially. So has wind, and so have various storage methods.
Yes, we can install enough.
Solar has been growing exponentially for the past decade or so, wind has not. Wind has run into supply chain limitations on rare earth metals such as neodymium and isn’t growing exponentially anymore.
It’s doubtful that solar will continue growing exponentially for the next 20 years but even if it does, that only gets us to the point of enough capacity to displace the ~17.9 PWh of electricity generated by fossil fuels in 2023.
To get off of fossil fuels we need to change everything else that’s burning fossil fuels too. That means every vehicle replaced with an EV, every gas furnace replaced with a heat pump. As we do that it’s going to 2-3x electricity demand.
The world burned 140 PWh worth of fossil fuels in 2023, and we only generated 1.6 PWh from solar power. That 1.6 is up from 1.3 PWh in 2022. A lot of that 140 PWh was wasted heat energy so we don’t need to get that high, but we still need to generate something in the area of 60-90 PWh of electricity annually to eliminate fossil fuels.
~4/5th of our energy still comes from fossil fuel, we have a long f’ing way to go. Even with the current exponential growth of solar we don’t get off of fossil fuels within 20 years, and that’s assuming global energy demand doesn’t increase.
Don’t take my word for it. Extrapolate the data yourself. Your rose coloured glasses aren’t helping.
I think there’s a contingent of people who think nuclear is really, really cool. And it is cool. Splitting atoms to make power is undeniably awesome. That doesn’t make it sensible, though, and they don’t separate those two thoughts in their mind. Their solution is to double down on talking points designed for use against Greenpeace in the 90s rather than absorbing new information that changes the landscape.
And then there’s a second group that isn’t even trying to argue in good faith. They “support” nuclear knowing it won’t go anywhere because it keeps fossil fuels in place.
What isn’t sensible about nuclear? For context, I’m coming from the US in an area with lots of empty space (i.e. tons of place to store radioactive waste) and without much in the way of hydro (I’m in Utah, a mountainous, desert climate). We get plenty of sun as well as plenty of snow. Nuclear should provide power at night and throughout the winter, and since ~89% of homes are heated with natural gas, we only need higher electricity production in the summer when it’s hot, which is precisely what solar is great for.
So here’s my thought process:
- nuclear for base load demand to cover nighttime power needs, as well as the small percentage of homes using electricity for heat
- solar for summer spikes in energy usage for cooling
- batteries for any excess solar/nuclear generation
If we had a nuclear plant in my area, we could replace our coal plants, as well as some of our natural gas plants. If we go with solar, I don’t think we have great options for electricity storage throughout the winter.
This is obviously different in the EU, but surely the nordic countries have similar problems as we do here, so why isn’t nuclear more prevalent there?
Because it makes no sense, environmentally or economically speaking. Nuclear is, as you said, base load. It can’t adjust for spikes in demand. So if there’s more energy in the grid than needed, it’s gonna be solar and wind that gets turned off to balance the grid. Investments in nuclear thus slow down the adoption of renewables.
Solar is orders of magnitude cheaper to build, while nuclear is one of the most expensive ways to generate electricity, even discounting the waste storage, which gets delegated the the public.
Battery technology has been making massive gains in scalability and cost in recent years. What we need is battery arrays to cover nighttime demand and spikes in production or demand, combined with a more adaptive industry that performs energy intensive tasks when it’s abundant. With countries that have large amounts of solar, it is already happening that during peak production, energy cost goes to zero (or even negative, as traded between utilities companies).
About the heating: gas can not stay the main way to heat homes, it’s yet another fossil fuel. What we need is heat pumps, which can have an efficiency of >300% (1kWh electricity gets turned into 3kWh of heat, by taking ambient heat from outside). Combined with large, well-insulated warm-water reservoirs, you can heat up more water than you need to higher temperature during times of electricity oversupply, and have more than enough to last you the night, without even involving batteries. Warm water is an amazing energy storage medium. Batteries cover electricity demand as well as a backup in case you need uncharacteristically much water. This is a system that’s slowly getting adopted in Europe, and it’s great. Much cheaper, and 100% clean.
Because grid level power delivery is about FAR more than just raw wattage numbers. Momentum of spinning turbines is extremely important to the grid. The grid relies on generation equipment maintaing an AC frequency of 60 hz or 50hz or whatever a country decides on. Changing loads throughout the day literally add an amount of drag to the entire grid and it can drag the frequency down. The inverse can also happen. If you have fluctuating wind or cloud cover you can bring the whole grid down if you can’t instantly spin up other methods to pick up the slack.
reliable consistent power delivery is absolutely critical when it comes to running the grid effectively and that is something that solar and wind are bad at
Ideally we will be able to use those technologies to fill grid level storage (batteries, pumped hydro) to supply 100% of our energy needs in the not too distant future but until then we desperately need large, consistent, clean power generation.
You aren’t wrong, but you are assuming that the grid is required. Solar panels can be installed at the point of use, and then the grid doesn’t come into it at all.
That’s the worst way to do solar, though. It doesn’t get to take advantage of economies of scale in installation and inverters. Some levelized cost of energy studies put it just as expensive as nuclear.
Solar gets its cheapness when it’s in fields or on top of large, flat commercial/industrial buildings.
I agree, but off grid solar requires a lot more panels and personal infrastructure owned by the customer than grid tied solar. and a storage solution for night time and winter and cloudy days.
A typical house isn’t going off grid and maintaining a worry free electric schedule without a minimum of 25,000$ of panels, mounts, inverters, batteries, BMS, cabling, installation, and permits.
To be fair, the cost is still less than the amount of time the system will last so economically is can be viable but who has 25,000$ just sitting around…you have to be able to install it yourself to save enough money to really even think about doing it.
I am on your side, but we should be focusing on storage technology right now because solar is honestly really advanced at this point. Once those technologies can work together all the arguments against solar that make sense disappear.
but at 1% of the cost, why are we still talking about nuclear
Sure… the reactor will go 24/7 (between maintenance and refuelling down times, and will use less land
Using the remaining 99% of the cost to bury batteries underground would seem reasonable.
Underground construction generally isn’t cost effective. It costs way more to get dirt and rock out of the way than just building a frame upwards. There might be other reasons to do it, but you want to avoid it if possible.
The land thing isn’t anywhere near enough of a concern for me, especially when dual uses of land are quite feasible.
24/7 is just about over commissioning and having storage. Build 10x as much and store what you generate. At those sorts of levels even an overcast day generates.
You’re either an astroturfer or useful idiot spreading oil lobby talking points.
Either you believe the climate science or you don’t. If you do, you know that we don’t have time for industry protectionism.
Do not assume bad faith over anything you disagree with.
While I disagree with the original statement, hostility never changed anyone’s mind.
hostility never changed anyone’s mind
Chronic abuse absolutely shapes human perception and behavior.
In this case, a lot of Lemmy has been so battered down by “China Bad” propaganda that they’ll straight up deny the threat of climate change to justify rejecting Chinese manufactured goods.
Yep the EU will be beholden to a dictatorial regime again. Instead of placating Putin for gas it will be Xi for solar panels and batteries.
What? Have you ever had a battery powered device for longer than 2 years?
It is good, period.
Local manufacturing is politically advantageous and may employ some people at the same time, but that’s where benefits end.
Europe didn’t reject Chinese face masks during COVID-19, and Europe shouldn’t reject Chinese solar during a climate emergency.
Solve that first, and political struggles later.
It’s not only a political struggle. Working conditions are tremendously better in Europe, Environmental Protection as well. Manufacturing photovoltaics takes a huge pile of chemicals that need to be handled properly to not cause any harm to the environment - China neither cares nor has any other incentives to actually do this properly, which is exactly why they are so cheap. Theres also the issue of poor quality, that if you’re manufacturing something that can have a significant impact on the environment, it should “count” and not be waste 10 years later.
Not only that, China’s subsidies are utterly unfair.
Destroying the environment in one part of the world to “save” a different one due to climate change is just ridiculously stupid and simple minded.
Solar manufacturing is not destroying China’s environment, fossil fuels are. By a massive margin.
They need to get off that merry go round as quickly as possible. While the efforts they’ve made are incredible it needs to continue to accelerate.
I wouldn’t say they’ve achieved these prices through subsidies in the way many people think. government support pushed their entire renewable industry ecosystem, western manufacturing went belly up, and now they are reaping the benefits.
Manufacturing photovoltaics takes a huge pile of chemicals that need to be handled properly to not cause any harm to the environment
Source for this? Cadmium is exclusive to 1 US manufacturer.
I see where you’re coming with that, and in principle, some of the points you make I would clearly share under different circumstances.
But to me, even with the side effects, rapid rollout of green tech (even if its production is not kept to the best standard) beats slow incremental growth with good standards in place, given the urgency with which world requires it. After all, even poorly produced Chinese options very much do offset their footprint compared to the alternatives.
There are some points for concern, such as the use of lithium ion batteries, for example, but Chinese companies also think ahead and implement alternative options - in case of batteries, they increasingly work with sodium-ion instead.
As per “unfair” subsidies - I’d rather urge all countries to go all in and compete on those, rather than complain about those who implemented them. Subsidies for green tech are essential to secure our future, they boost the green industry and expedite its expansion, and they should only be seen as a good, not the evil.
It seems like China is putting a lot of efforts into becoming environmentally cleaner in the last few years though. I’m hoping that they’ve finally realized that pollution is bad.
Local manufacturing is politically advantageous and may employ some people at the same time, but that’s where benefits end.
There are legitimate strategic concerns with sourcing things long-term from potentially hostile states.
Europe should absolutely take advantage of current Chinese production to improve their own green energy efforts, but looking into local production in addition is not just a ‘for-show’ move. As sanctions on Russia show, dependence on markets that can potentially turn hostile can be very damaging.
By providing big subsidies to green energy developement. Something the EU could also have done but refused to. And so they lost their entire lead.
When panels were 30c/watt, projects at $1/watt in EU and US happened. 70c/watt was spent on labour, copper, support structures, and grid connection equipment. All of those can be locally produced, with possible exception of last item.
At 6c/watt, that is over 90% of power projects are local economy boosting instead of 70%. It provides cheaper energy that is useful for industrialization and cost of living benefits too. US tariffs on solar are entirely about protecting oil/gas extortion power instead of a $10B solar production industry that needs fairly expensive support.
Solar imports does not cause energy dependence. You have power for 30+ years with no reliance on continuous fuel supplies. Shoes and apparel is a $450B industry in US. You need new supplies every year, and it makes much more sense to secure supply in that industry for war on the world purposes.
Solar has always an extremely high ratio for megawatt per mass unit.
This price is really good
Just have to buy 1100 panels 😋 but then the price is 0.055€/watt …
I Want one, but only one or a couple, to put on my balcony…
Thousands of people buying rooftop panels was never going to be the best way towards a Water/Wind/Solar (WWS) future. Fitting panels to the roof has to work around the roof geometry and obstructions like vents. That makes every job a custom job. It also means thousands of small inverters rather than a few big ones.
Compare that to setting up thousands of panels on racks in a field. As long as it’s relatively open and flat, you just slap those babies down. You haul in a few big inverters which are often built right into shipping containers that can just be placed on site, hooked up, and left there. Batteries need inverters, too, so if your project includes some storage, then you only need one set of inverters.
I get the feeling of independence from the system that solar panels on the roof gives people, but it’s just not economically the best way to go. The insanely cheap dollars per MWh of solar is only seen when deploying them on a mass scale. That means roofs of commercial/industrial buildings or bigger.
Rooftop units might not be the least expressive, but they are absolutely the way to go. The less we rely on the utilities, the more demand we take off of their adding grid, that they refuse to upgrade. It also means more energy independence. A friend of mine has a small rooftop setup that has completely offset his electricity isn’t to the punt that he bought a plugin hybrid that never goes out battery for his day to day travels and costs him nothing to charge.
These are topcon modules only. Considering a 400W panel will have about 72 modules in it, that’s only about 15 panels worth. Of course, then you have to actually build the panel and connect the modules, put it behind glass inside a frame, then put in a bypass diode and leads for connection. So an actual panel ends up being about 5-10X the cost of the modules per W.
You can pay a lot less than 10x for completed panels. https://store.santansolar.com/ amazed me.
Assuming these prices are ideal for a solar grid, which EU country(s) would have the highest chance of shifting towards solar; I wonder
Probably all of them. Germany is really not ideal for solar in terms of weather, yet they are installed by many people all over the place, even today. With the cheaper prices things will get even better.
Germany is already over 50% renewable. :)