Oh nice, another Gary Marcus “AI hitting a wall post.”
Like his “Deep Learning Is Hitting a Wall” post on March 10th, 2022.
Indeed, not much has changed in the world of deep learning between spring 2022 and now.
No new model releases.
No leaps beyond what was expected.
\s
Gary Marcus is like a reverse Cassandra.
Consistently wrong, and yet regularly listened to, amplified, and believed.
I hope it all burns.
I work with people who work in this field. Everyone knows this, but there’s also an increased effort in improvements all across the stack, not just the final LLM. I personally suspect the current generation of LLMs is at its peak, but with each breakthrough the technology will climb again.
Put differently, I still suspect LLMs will be at least twice as good in 10 years.
I just want a portable self hosted LLM for specific tasks like programming or language learning.
You can install Ollama in a docker container and use that to install models to run locally. Some are really small and still pretty effective, like Llama 3.2 is only 3B and some are as little as 1B. It can be accessed through the terminal or you can use something like OpenWeb UI to have a more “ChatGPT” like interface.
I have a few LLMs running locally. I don’t have an array of 4090s to spare so I am limited to the smaller models 8B and whatnot.
They definitely aren’t as good as anything you get remotely. It’s more private and controlled but it’s much less useful (I’ve found) than any of the other models.
Welcome to the top of the sigmoid curve.
If you were wondering what 1999 felt like WRT to the internet, well, here we are. The Matrix was still fresh in everyone’s mind and a lot of online tech innovation kinda plateaued, followed by some “market adjustments.”
I think it’s more likely a compound sigmoid (don’t Google that). LLMs are composed of distinct technologies working together. As we’ve reached the inflection point of the scaling for one, we’ve pivoted implementations to get back on track. Notably, context windows are no longer an issue. But the most recent pivot came just this week, allowing for a huge jump in performance. There are more promising stepping stones coming into view. Is the exponential curve just a series of sigmoids stacked too close together? In any case, the article’s correct - just adding more compute to the same exact implementation hasn’t enabled scaling exponentially.