I haven’t found anything calling this crank science, although it does make some rather sweeping claims. One is that dark matter does not exist, and another is that the universe is 27 billion years old.

https://phys.org/news/2024-03-universe-dark.html

0 points
*

Just some superquick thoughts…

Regarding “TL” from wikipedia:

Despite periodic re-examination of the concept, tired light has not been supported by observational tests and remains a fringe topic in astrophysics.[4]

It is not very reliable to use a component to build a model that has “no support from observations”. This is a theoretical result, I don’t mind them doing this work, one needs to do these things to understand the various aspects of a problem.

From one of Gutas papers, re. “CCC” (I think they are referencing the “CCC” here at least):

A scalar-tensor theory of gravity is considered […]

Yeah, it is not generally a good idea to just throw in more components, like here a scalar. I’m guessing it cannot be the inflaton, since it is has to matter for late-time cosmology, so they either have to explain why this scalar has not been found by the LHC or that it is the Higgs. Maybe they do?

The paper linked in the article is also about fitting some cosmological data. Does it still explain galaxy rotations? What about other cosmological data, like equation of state parameter and such?

I’d say this is very teoretical work, on some quite unstable legs. I would not throw out the ΛCDM+dark matter just yet.

permalink
report
reply
0 points

It is not very reliable to use a component to build a model that has “no support from observations”.

But it has support from observations? It’s an alternative explanation for the red shifts we observe from far away sources.

ΛCDM has also problems. For example that two different methods of calculating the Hubble constant do not agree, or that the James Webb telescope found galaxies, that are too old. The latter was the motivation for the paper and gives an explanation for it, contrary to current models.

Yeah, it is not generally a good idea to just throw in more components, like here a scalar.

Well, guess what the Λ in ΛCDM is? They just put it in there to be able to fit the theory to the observation. And it’s absurd to say, that they would’ve found that in the LHC, when they also did not find dark matter particles, even though they are actively looking for those.

Does it still explain galaxy rotations? What about other cosmological data, like equation of state parameter and such?

They are aware of this and mention it already in the abstract:

It remains to be seen if the new model is consistent with the CMB power spectrum, the Big Bang nucleosynthesis of light elements, and other critical observations.

It’s quite common for research groups to do this, because their work is quite complex and takes time. They proved that their approach might have some merit and now other groups can help them going forward with it.

permalink
report
parent
reply
0 points

Well, guess what the Λ in ΛCDM is? They just put it in there to be able to fit the theory to the observation. And it’s absurd to say, that they would’ve found that in the LHC, when they also did not find dark matter particles, even though they are actively looking for those.

Kind of, but also not really. It is a bit different to add a CC which we can implicitly measure the size and equation of state of instead of adding a scalar which we observationally only have a lower bound on the mass on (from not being found in LHC). If their fit makes the mass very high, then they are fine is all I’m saying. The CC and dark matter are different, so yeah, it… would be strange to ask to find the CC att LHC because it did not find dark matter…? What?

It’s quite common for research groups to do this, because their work is quite complex and takes time. They proved that their approach might have some merit and now other groups can help them going forward with it.

Absolutely. This is perfectly fine. I’m just saying with how far this direction has come right now, I’m not convinced, but that shouldn’t mean much :-)

permalink
report
parent
reply
0 points

The point with the LHC is, that it is very hard to find something, that you are not actively looking for. You have to at least have a certain understanding of the decay channels of the proposed particle to be able to scan the data for it. It’s the same problem they have for discovering dark matter particles.

permalink
report
parent
reply
0 points

Dark matter theories have had competitors for a long time. MOND is a pretty significant one.

A helpful thing to keep in mind is astrophysicists are well aware that theories of the “age of the universe” are closer to that interesting thought experiment phase than a more concrete sort of harder theory. This stuff is still many years from being nailed down even a little bit.

permalink
report
reply
0 points

Yeah, but somehow mainstream science gaslit everyone into thinking, that the current model is definitely right, even though there are relevant observations, that are not explained by it. But I guess we just need a new even bigger particle accelerator and then we will definitely find dark matter particles!

permalink
report
parent
reply
0 points

I don’t know that scientists gaslit anyone. I think it’s more the state of journalism driven by the way it is monetized. Chasing SEO drives clickbait headlines and sensational claims to the top of everyone’s feed.

I really appreciate the discussion on Lemmy.

permalink
report
parent
reply
0 points

Oh with mainstream science I meant the journalism, probably bad wording.

permalink
report
parent
reply

science

!science@lemmy.world

Create post

just science related topics. please contribute

note: clickbait sources/headlines aren’t liked generally. I’ve posted crap sources and later deleted or edit to improve after complaints. whoops, sry

Rule 1) Be kind.

lemmy.world rules: https://mastodon.world/about

I don’t screen everything, lrn2scroll

Community stats

  • 4.2K

    Monthly active users

  • 475

    Posts

  • 3.4K

    Comments