Data from thousands of EVs shows the average daily driving distance is a small percentage of the EPA range of most EVs.
For years, range anxiety has been a major barrier to wider EV adoption in the U.S. It’s a common fear: imagine being in the middle of nowhere, with 5% juice remaining in your battery, and nowhere to charge. A nightmare nobody ever wants to experience, right? But a new study proves that in the real world, that’s a highly improbable scenario.
After analyzing information from 18,000 EVs across all 50 U.S. states, battery health and data start-up Recurrent found something we sort of knew but took for granted. The average distance Americans cover daily constitutes only a small percentage of what EVs are capable of covering thanks to modern-day battery and powertrain systems.
The study revealed that depending on the state, the average daily driving distance for EVs was between 20 and 45 miles, consuming only 8 to 16% of a battery’s EPA-rated range. Most EVs on sale today in the U.S. offer around 250 miles of range, and many models are capable of covering over 300 miles.
People need to seriously consider 40mi range PHEVs.
Toyota Prius Prime, Ford Escape PHEV, and others have “EV-mode” buttons that drive exclusively on electric now. Meaning you could keep the gasoline for “emergency use only”, even as you enter highway speeds. (Older PHEVs would turn on the engine because they didn’t have this mode-selector button).
All the complexity of a gas engine, plus the cost of a battery. Just so you can use the range once or twice a year? What happens when you don’t use the gas engine for months and then go to start it with gelled gas? You’re trying to solve a problem that the article shows doesn’t exist for 99%
All the complexity of a gas engine
Batteries are more complex. A 200lb battery is less complex than 1000lb or 2000lb battery.
EDIT: I’m an electrical engineer. I can prove to you the complexities of a modern EV Battery. Or do you think 400V systems composed of parallel transistors, battery-management systems, and a whole slew of literally fucking computers estimating the internal-state of the thousands of individual cells that compose a modern EV is a “simple” task?
EDIT: Do you know what kind of degrees you need to design a battery-management system? To mass produce those circuit boards? And to do it all over again 2 years from now when all the chemistries change and therefore the internal estimates of each of these cells completely and drastically changes? No? Please stop pretending that “Batteries” are simple.
Case in point: it’s the battery that will most likely fail in ALL of the discussed designs here. Why? Because chemistry is incredibly difficult and hasn’t been solved yet. I do await for the future improvements in the EV battery pack that are sure to come over the next few years and decade… But let’s not pretend that anything is done R&D yet.
The gasoline engine? Okay we’re up to Atkinson cycle so that’s a bit different but was around in the 1800s anyway. Nothing is really new or complex here. The engines mechanics were understood nearly two centuries ago.
There’s a reason why gasoline engines are so reliable, while batteries keep having faults. Complexity has a lot to do with it.
What happens when you don’t use the gas engine for months and then go to start it with gelled gas?
If only computers existed and had timers that automatically burned off stale gasoline.
Also, just fill up 2 gallons or so to minimize the stale gasoline effect. You’ll only be filling up once or twice a month with all the EV driving you’ll be doing in practice.
You’re trying to solve a problem that the article shows doesn’t exist for 99%
No. The 800+ to 1500+ extra lbs of battery you lug around with a full 300mi electric car is what’s actually being wasted in practice.
Sorry, fellow me/ee, disagree on complexity, having worked directly with both. Advantage of mechanical systems: theoretically predictable action, repeated endlessly so long as torque at the tires is req’d. Reality: tolerances in various parts open over time, resulting in a nonlinear decrease in efficiency and power. A symphony of hundreds of bolted joints, springs, tappets and valves, a sum of thousands of parts dancing while a complex ECU watches over the system. A single part or joint far enough out of tolerance will cause very, very expensive damage.
Battery powered vehicles: motor has full torque at close to zero RPM, all components in the control system are solid state, and software (always updateable) handles control decisions. Electric motor has 6 to 30 parts, based on whether liquid cooled or air cooled.
Batteries are absolutely not more complex than an internal combustion car. They’re newer, but not more complex.
I drive every month over 1100km one way and then few days later back home. It’s almost impossible to do it with EV
No I don’t. I don’t have a charger at my apartment and I’m not going to wait for a charge on a daily basis at a public charger for one of the more city focused EVs. I won’t buy an EV that doesn’t have the range of a “normal” car and I’m not alone on that.
I’m 70 miles from the slopes. There’s no charging at the lots and the last thing I want to do after 6+ hours of skiing is to stop and wait for a charge on the way home. That means having to have at least 140 miles + some extra to get around done the next day before hitting up a charger.
The averages are one thing, but a car that meats an average need will have limitations on even frequently occurring exceptions. The average falls short of a round trip to the airport even. If a car can’t get me to and from the airport in a single charge then I can’t choose that car.
The article rightfully recognizes at the end that this really isn’t an issue of reeducating the customer. This is a matter of providing a product that meets the customers expectations.
I think the main problem with the article is that, yes, most days we only need range for short distances, that’s where those numbers come from. But occasionally we have an appointment in the next city that’s over a hundred kilometers away and we don’t have time to charge the because we need to return with the same mileage. Like if we want to visit granny in a village a few hundred kilometers away with no charging spot anyway near.
So we don’t need hundreds of kilometers of range every day. But we need it occasionally.
EV driver here. I’d be happy to have a changing point available wherever I go but so far it’s been a coin flip. Either occupied, broken, torn down or a different plug type. And if I finally get one, the login and payment process is painfully bad and takes 10 to 15 minutes to get going. If it works at all.