Wirkt jetzt erstmal wie eine vernünftige KI Anwendung Züge danach zu priorisieren welchen Einfluss ihre Verspätung auf das gesamt Netz hätten. Ist halt schade das trotzdem nicht die Ursache (mangelnder Ausbau, Wartung…) der Verspätungen effektiver angegangen werden können.
So, wie das im Artikel beschrieben ist, klingt das technisch gesehen eher nach einem Optimierungssystem als einer “KI”. Ersteres erscheint mir eine sinnvolle technische Anwendung, wenn ein stabiles und erwartbares System mit bekannten Parametern vorliegt, wie das für ein Schienennetz der Fall ist. Aber zweiteres verkauft sich halt einfach besser.
Das Problem mit herkömmlicher Modellierung wird die Komplexitätsexplosion sein, denn alles beeinflusst alles und das auch noch lange und Zeit kann man sich auch nicht lassen denn die Weichen müssen gestellt werden. NP-Komplett würde mich jetzt nicht überraschen.
ML-Ansätze sind geeignet sehr schnell ungenaue, aber trotzdem gute Antworten zu liefern. “Pi mal Daumen” ist halt schon ein guter Ansatz wenn’s ein Experte macht der tagein tagaus nichts anderes tut als Echtzeit-Streckendaten zu fressen.
Das ist ein berechtigter Einwand, hast Recht. Hatte mich auf die Beschreibung “Die KI berechnet dann unter Einbeziehung der näheren Zukunft” bezogen und damit von einem eher lokal begrenzten Problem ausgegangen.
Ich hab mich beim Lesen des Artikels gefragt, ob die Pi mal Daumen Lösung ausreichend für so etwas wie den Anwendungsfall der DB ist. Aber da können wir anhand des Artikels wohl nur mutmaßen.
Der Beschreibung nach klingt das stark nach einem klassischen “Model Predictive Control”-Verfahren (was aber aufgrund der Vagheit des Artikels schwer zu verifizieren ist).
Bei so einem Verfahren wird ein Optimierungsproblem gelöst der Form “Welche Aktionen muss ich jetzt durchführen, damit die Güte des Verhaltens in den Nächsten t Zeitschritten möglichst gut ist”. Das ist dann ein Optimierungsproblem mit endlich vielen Variablen, wo dann Löseverfahren drauf geschmissen werden können (wie sie für NP-schwere Probleme häufig verwendet werden).
Insgesamt also: Ja, sehe ich genau wie du. Diese Model Predictive Control Algorithmen gibt es weit vor der aktuellen KI-Welle. Je nach Definition ist aber so ziemlich alles KI, und dann passt es wieder.