You are viewing a single thread.
View all comments View context
11 points

Hahaha. People are great.

permalink
report
parent
reply
3 points

That’s where the almost comes in. Unfortunately, there are many traps for the unwary stochastic parrot.

Training a neural net can be seen as a generalized regression analysis. But that’s not where it comes from. Inspiration comes mainly from biology, and also from physics. It’s not a result of developing better statistics. Training algorithms, like Backprop, were developed for the purpose. It’s not something that the pioneers could look up in a stats textbook. This is why the terminology is different. Where the same terms are used, they don’t mean quite the same thing, unfortunately.

Many developments crucial for LLMs have no counterpart in statistics, like fine-tuning, RLHF, or self-attention. Conversely, what you typically want from a regression - such as neatly interpretable parameters with error bars - is conspicuously absent in ANNs.

Any ideas you have formed about LLMs, based on the understanding that they are just statistics, are very likely wrong.

permalink
report
parent
reply
2 points

“such as neatly interpretable parameters”

Hahaha, hahahahahaha.

Hahahahaha.

permalink
report
parent
reply
1 point

If parameters aren’t neatly interpretable then it’s bad statistics. You’ve learned nothing about the general structure of the data.

Linear regression models are often great tools for explaining the structure of the data. You can directly see which parts of the input are more important for determining the output. You have very little of that when using neural networks with more than 1 hidden layer.

permalink
report
parent
reply
2 points

That book probably doesn’t go much further than neural networks with 1 hidden layer. Maybe 2 hidden layers at most.

IMO, statistics is about explaining data. Regression is useful to explain how parameters relate to each others. Statistics that don’t help us understand data isn’t useful statistics.

Modern machine learning has strayed far away from data explanation. Now it’s common to deal with more than a dozen hidden layers. It might have roots in statistics, but mostly it’s about brute forcing any curve to the data. It doesn’t help us understanding the data better, but at least we have approximated some function.

permalink
report
parent
reply
1 point

If you have any ideas about how statistics are at the bottom of LLMs, you are probably thinking about some other ML technique.

It might have roots in statistics

Care to reiterate?

permalink
report
parent
reply
2 points

Just because wheels have roots in horse wagons doesn’t mean cars are horse wagons

permalink
report
parent
reply

Science Memes

!science_memes@mander.xyz

Create post

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don’t throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

Community stats

  • 10K

    Monthly active users

  • 3.2K

    Posts

  • 51K

    Comments