I approve of the overall message but indoor farming is kind of insane in the present day. It uses incredible amounts of energy and our scarce building materials to do something we can do much more easily outside.
Long term it might be important but I don’t think it makes sense until we solve the current energy crisis.
Initial upfront costs are heavy but you would be saving all of the transport and logistics costs for the lifetime of the facility. Aeroponics are also a lot less resource intense than growing in the dirt.
Not in energy requirements when the sun is free and electricity and lightbulbs are not.
Especially for some crops, like leafy greens. Having a semi-sterile environment can also mean pesticide-free crops. (Or at least, that’s my understanding).
Way less water use and transport costs for a superior (fresher, pesticide-free) product.
It only makes sense for some crops, though. Ain’t nobody growing watermelons or carrots in urban vertical farms.
Has anyone broken down the difference in energy between artificially creating growing conditions in the middle of cities compared to just transporting the food from where it grows easily? Trains and ships which transport most food are incredibly energy efficient per ton transported
Trains can transport one ton of goods 470 miles on one gallon of fuel and ships can transport one ton of goods 600 miles on one gallon of fuel. If a urban farm can produce one ton of food it needs to consume less than a few gallons of fuel’s worth of energy in lighting and other city-specific infrastructure in order to come out ahead of growing food where it grows best
I think it’s outweighed by the possibilities of hydroponic farming to reduce overall land (and therefore fossil fuel) use for agriculture.
Using solar panels to power artificial lighting so you can vertically stack farms directly inside cities doesn’t make any sense from a sustainability perspective.
But greenhouses in the suburbs that are tied into the city’s thermal grid and seasonal thermal energy store is the future of agriculture IMO.
By enclosing fields in greenhouses you decrease the land, water, pesticide, and fertilizer requirements, while also eliminating fertilizer runoff and the possibility of soil depletion from tilling. By tying a greenhouse into a thermal grid the greenhouse can act as a solar thermal collector in the summer while maybe even condensing the water that evaporates through the plants for reuse. Then you can use that same heat to heat homes during the winter or extend the growing season in the greenhouse even further.
https://www.renewableenergymagazine.com/storage/world-s-largest-thermal-energy-storage-to-20240409
https://ag.umass.edu/greenhouse-floriculture/fact-sheets/heat-storage-for-greenhouses
https://earthobservatory.nasa.gov/images/152874/a-greenhouse-boom-in-china
https://earthobservatory.nasa.gov/images/150070/almerias-sea-of-greenhouses
https://www.washingtonpost.com/business/interactive/2022/netherlands-agriculture-technology/ (Yes I know they use artificial lighting in a lot of these, and yes I know a lot of the value of their agricultural exports comes from flowers, but the point is it’s another example of large scale greenhouse use. Also they do still produce quite a bit of food in a small area, in addition to the flowers.)
Oh I fully agree that greenhouses have a role to play in food production. But that’s not typically what’s meant by indoor farming. That’s a separate but related concept.
That said, you may be slightly overstating the benefits here. Greenhouses can actually be very vulnerable to pests and diseases due to the high humidity, year-round warmth, and lack of natural predators. In theory they’re isolated but in practice it’s very likely some organism you don’t want will sneak in somehow. Pollination can also be a challenge for crops that need that.
I think these challenges can be overcome but there’s a lot of work to be done on them still.