People looking at a strobing light, start to see it as just “on” (not blinking anymore) at almost exactly 60Hz.
In double blind tests, pro gamers can’t reliably tell 90fps from 120.
There is however, an unconscious improvement to reaction time, all the way up to 240fps. Maybe faster.
It seems to be more complicated than that
However, when the modulated light source contains a spatial high frequency edge, all viewers saw flicker artifacts over 200 Hz and several viewers reported visibility of flicker artifacts at over 800 Hz. For the median viewer, flicker artifacts disappear only over 500 Hz, many times the commonly reported flicker fusion rate.
The real benefit of super high refresh rates is the decrease in latency for input. At lower rates the lag between input and the next frame is extremely apparent, above about ~144hz it’s much less noticable.
The other side effect of running at high fps is that when heavy processing occurs and there are frame time lags they’re much less noticable because the minimum fps is still very high. I usually tell people not to pay attention to the maximum fps rather look at the average and min.
I think having higher frame rates isn’t necessarily about whether our eyes can perceive the frame or not. As another commenter pointed out there’s latency benefits, but also, the frame rate affects how things smear and ghost as you move them around quickly. I don’t just mean in gaming. Actually, it’s more obvious when you’re just reading an article or writing something in Word. If you scroll quickly, the words blur and jitter more at low frame rates, and this is absolutely something you can notice. You might not be able to tell the frametime, but you can notice that a word is here one moment and next thing you know, it teleported 1 cm off