You are viewing a single thread.
View all comments View context
1 point

Given r=f(θ), we are generally not concerned with r′=f′(θ); that describes how fast r changes with respect to θ

I think this part from the textbook describes what you’re talking about

Instead, we will use x=f(θ)cosθ, y=f(θ)sinθ to compute dydx.

And this would give you the actual tangent line, or at least the slope of that line.

permalink
report
parent
reply
1 point
*

But then your definition of a straight line produces two different shapes.

Starting with the same definition of straight for both. Y(x) such that y’(x) = C produces a function of cx+b.

This produces a line

However if we have the radius r as a function of a (sorry I’m on my phone and don’t have a Greek keyboard).

R(a) such that r’(a)=C produces ra +d

However that produces a circle, not a line.

So your definition of straight isn’t true in general.

permalink
report
parent
reply
1 point

I think we fundamentally don’t agree on what “tangent” means. You can use

x=f(θ)cosθ, y=f(θ)sinθ to compute dydx

as taken from the textbook, giving you a tangent line in the terms used in polar coordinates. I think your line of reasoning would lead to r=1 in polar coordinates being a line, even though it’s a circle with radius 1.

permalink
report
parent
reply
0 points
*

Except here you said here

https://lemmy.ml/comment/13839553

That they all must be equal.

Tangents all be equal to the point would be exponential I thinks. So I assume you mean they must all be equal.

Granted I assumed constant, because that’s what actually produces a “straight” line. If it’s not, then cos/sin also fall out as “straight line”.

So I’ve either stretched your definition of straight line to include a circle, or we’re stretching “straight line”

permalink
report
parent
reply

Science Memes

!science_memes@mander.xyz

Create post

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don’t throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

Community stats

  • 12K

    Monthly active users

  • 2.8K

    Posts

  • 41K

    Comments