You are viewing a single thread.
View all comments View context
4 points

Polar Functions and dydx

We are interested in the lines tangent a given graph, regardless of whether that graph is produced by rectangular, parametric, or polar equations. In each of these contexts, the slope of the tangent line is dydx. Given r=f(θ), we are generally not concerned with r′=f′(θ); that describes how fast r changes with respect to θ. Instead, we will use x=f(θ)cosθ, y=f(θ)sinθ to compute dydx.

From the link above. I really don’t understand why you seem to think a tangent line in polar coordinates would be a circle.

permalink
report
parent
reply
1 point
*

Sorry that’s not what I’m saying.

I’m saying a line with constant tangent would be a circle not a line.

Let me try another way, a function with constant first derivative in polar coordinates, would draw a circle in Cartesian

permalink
report
parent
reply
1 point

Given r=f(θ), we are generally not concerned with r′=f′(θ); that describes how fast r changes with respect to θ

I think this part from the textbook describes what you’re talking about

Instead, we will use x=f(θ)cosθ, y=f(θ)sinθ to compute dydx.

And this would give you the actual tangent line, or at least the slope of that line.

permalink
report
parent
reply
1 point
*

But then your definition of a straight line produces two different shapes.

Starting with the same definition of straight for both. Y(x) such that y’(x) = C produces a function of cx+b.

This produces a line

However if we have the radius r as a function of a (sorry I’m on my phone and don’t have a Greek keyboard).

R(a) such that r’(a)=C produces ra +d

However that produces a circle, not a line.

So your definition of straight isn’t true in general.

permalink
report
parent
reply

Science Memes

!science_memes@mander.xyz

Create post

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don’t throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

Community stats

  • 12K

    Monthly active users

  • 2.8K

    Posts

  • 41K

    Comments