You are viewing a single thread.
View all comments
1 point

“um actually” I guess to properly apply the pythagoras theorem here, you’d need to consider the magnitude of the lengths of each of these vectors in complex space, both of which are 1 (for the magnitude of a complex number you ironically can use pythag, with the real and imaginary coefficients of each complex number.

So for 1 you get mag(1+0i)=root(1^2 + 0^2) and for i you get mag(0+1i)=root(0^2 + 1^2)

Then using pythag on the magnitudes, you get hypotenuse = root(1^2 + 1^2) = root 2, as expected

Shit I meant uhh imaginary number go brr it zero

permalink
report
reply

Math Memes

!mathmemes@lemmy.blahaj.zone

Create post

Memes related to mathematics.

Rules:
1: Memes must be related to mathematics in some way.
2: No bigotry of any kind.

Community stats

  • 1K

    Monthly active users

  • 72

    Posts

  • 599

    Comments

Community moderators