LeixB
LeixB@lemmy.world
Joined
0 posts • 20 comments
Haskell
Merry Christmas!
{-# LANGUAGE OverloadedStrings #-}
module Main where
import Data.Either
import Data.Text hiding (all, head, zipWith)
import Data.Text qualified as T
import Data.Text.IO as TIO
type Pins = [Int]
toKeyLock :: [Text] -> Either Pins Pins
toKeyLock v = (if T.head (head v) == '#' then Left else Right) $ fmap (pred . count "#") v
solve keys locks = sum [1 | k <- keys, l <- locks, fit k l]
where
fit a b = all (<= 5) $ zipWith (+) a b
main = TIO.getContents >>= print . uncurry solve . partitionEithers . fmap (toKeyLock . transpose . T.lines) . splitOn "\n\n"
Haskell
For part2 I compared the bits in the solution of part1 with the sum of x and y. With that, I could check the bits that did not match in a graphviz diagram and work from there.
code
import Control.Arrow
import Control.Monad.RWS
import Data.Bits (shiftL)
import Data.Char (digitToInt)
import Data.Functor
import Data.List
import Data.Map qualified as M
import Data.Tuple
import Text.ParserCombinators.ReadP hiding (get)
import Text.ParserCombinators.ReadP qualified as ReadP
type Cable = String
data Connection = And Cable Cable | Or Cable Cable | Xor Cable Cable deriving (Show)
cable = count 3 ReadP.get
eol = char '\n'
initial :: ReadP (M.Map Cable Bool)
initial = M.fromList <$> endBy ((,) <$> cable <*> (string ": " *> (toEnum . digitToInt <$> ReadP.get))) eol
wires = M.fromList <$> endBy wire eol
wire = do
a <- cable <* char ' '
op <- choice [string "AND" $> And, string "OR" $> Or, string "XOR" $> Xor]
b <- char ' ' *> cable
c <- string " -> " *> cable
return (c, op a b)
parse = fst . last . readP_to_S ((,) <$> initial <*> (eol *> wires <* eof))
type Problem = RWS (M.Map Cable Connection) () (M.Map Cable Bool)
getConnection :: Connection -> Problem Bool
getConnection (And a b) = (&&) <$> getWire a <*> getWire b
getConnection (Or a b) = (||) <$> getWire a <*> getWire b
getConnection (Xor a b) = xor <$> getWire a <*> getWire b
xor True False = True
xor False True = True
xor _ _ = False
getWire :: Cable -> Problem Bool
getWire cable = do
let computed = do
a <- asks (M.! cable) >>= getConnection
modify (M.insert cable a)
return a
gets (M.!? cable) >>= maybe computed return
fromBin :: [Bool] -> Int
fromBin = sum . fmap fst . filter snd . zip (iterate (`shiftL` 1) 1)
toBin :: Int -> [Bool]
toBin = unfoldr (\v -> if v == 0 then Nothing else Just (first (== 1) (swap (divMod v 2))))
part1 initial wiring = fst $ evalRWS (mapM getWire zs) wiring initial
where
zs = filter ((== 'z') . head) . sort $ M.keys wiring
part2 initial wiring = fmap fst . filter snd $ zip [0..] (zipWith (/=) p1 expect)
where
xs = fromBin . fmap (initial M.!) . filter ((== 'x') . head) $ sort $ M.keys initial
ys = fromBin . fmap (initial M.!) . filter ((== 'y') . head) $ sort $ M.keys initial
zs = filter ((== 'z') . head) . sort $ M.keys wiring
p1 = part1 initial wiring
expect = toBin $ xs + ys
main = getContents >>= print . (fromBin . uncurry part1 &&& uncurry part2) . parse
Haskell
solution
import Control.Arrow
import Data.Bits
import Data.List
import qualified Data.Map as M
parse = fmap (secretNums . read) . lines
secretNums :: Int -> [Int]
secretNums = take 2001 . iterate (step1 >>> step2 >>> step3)
where
step1 n = ((n `shiftL` 06) `xor` n) .&. 0xFFFFFF
step2 n = ((n `shiftR` 05) `xor` n) .&. 0xFFFFFF
step3 n = ((n `shiftL` 11) `xor` n) .&. 0xFFFFFF
part1 = sum . fmap last
part2 = maximum . M.elems . M.unionsWith (+) . fmap (deltas . fmap (`mod` 10))
deltas l = M.fromListWith (\n p -> p) $ flip zip (drop 4 l) $ zip4 diffs (tail diffs) (drop 2 diffs) (drop 3 diffs)
where
diffs = zipWith (-) (tail l) l
main = getContents >>= print . (part1 &&& part2) . parse
Haskell
solution
import Control.Arrow
import Data.Array.Unboxed
import Data.Functor
import Data.List
import Data.Map qualified as M
import Data.Set qualified as S
type Pos = (Int, Int)
type Board = Array Pos Char
type Path = M.Map Pos Int
parse board = listArray ((1, 1), (length l, length $ head l)) (concat l)
where
l = lines board
moves :: Pos -> [Pos]
moves p = [first succ p, first pred p, second succ p, second pred p]
getOrigin :: Board -> Maybe Pos
getOrigin = fmap fst . find ((== 'S') . snd) . assocs
getPath :: Board -> Pos -> [Pos]
getPath board p
| not $ inRange (bounds board) p = []
| board ! p == 'E' = [p]
| board ! p == '#' = []
| otherwise = p : (moves p >>= getPath (board // [(p, '#')]))
taxiCab (xa, ya) (xb, yb) = abs (xa - xb) + abs (ya - yb)
solve dist board = do
path <- M.fromList . flip zip [1 ..] <$> (getOrigin board <&> getPath board)
let positions = M.keys path
jumps = [ (path M.! a) - (path M.! b) - d | a <- positions, b <- positions, d <- [taxiCab a b], d <= dist]
return $ length $ filter (>=100) jumps
main = getContents >>= print . (solve 2 &&& solve 20) . parse
Haskell
solution
{-# LANGUAGE LambdaCase #-}
module Main where
import Control.Arrow
import Control.Monad.State
import Data.Char
import Data.List
import Data.Map qualified as M
import Data.Monoid
import Text.ParserCombinators.ReadP
parse = fst . last . readP_to_S ((,) <$> (patterns <* eol <* eol) <*> designs)
where
eol = char '\n'
patterns = sepBy word (string ", ")
designs = endBy word eol
word = munch1 isLetter
part1 patterns = length . filter (valid patterns)
part2 patterns = getSum . combinations patterns
dropPrefix = drop . length
valid :: [String] -> String -> Bool
valid patterns design = go design
where
go "" = True
go design = case filter (`isPrefixOf` design) patterns of
[] -> False
l -> any (go . (`dropPrefix` design)) l
combinations :: [String] -> [String] -> Sum Int
combinations patterns designs = evalState (fmap mconcat . mapM go $ designs) mempty
where
go "" = return $ Sum 1
go design =
gets (M.lookup design) >>= \case
Just c -> return c
Nothing -> case filter (`isPrefixOf` design) patterns of
[] -> return $ Sum 0
l -> do
res <- mconcat <$> mapM (go . (`dropPrefix` design)) l
modify (M.insert design res)
return res
main = getContents >>= print . (uncurry part1 &&& uncurry part2) . parse
Haskell
solution
import Control.Arrow
import Control.Monad
import Control.Monad.RWS
import Control.Monad.Trans.Maybe
import Data.Array (inRange)
import Data.Char
import Data.Set qualified as S
import Text.ParserCombinators.ReadP hiding (get)
parse = fst . last . readP_to_S (endBy ((,) <$> num <*> (char ',' *> num)) $ char '\n')
where
num = read <$> munch1 isDigit
bounds = ((0, 0), (70, 70))
bfs :: MaybeT (RWS (S.Set (Int, Int)) () (S.Set (Int, Int), [(Int, (Int, Int))])) Int
bfs = do
(seen, (c, x) : xs) <- get
modify . second $ const xs
isCorrupt <- asks (S.member x)
when (not (x `S.member` seen) && not isCorrupt && inRange bounds x) $
modify (S.insert x *** (++ ((succ c,) <$> neighbors x)))
if x == snd bounds
then return c
else bfs
neighbors (x, y) = [(succ x, y), (pred x, y), (x, succ y), (x, pred y)]
findPath = fst . flip (evalRWS (runMaybeT bfs)) (mempty, [(0, (0, 0))]) . S.fromList
part1 = findPath . take 1024
search corrupt = go 0 (length corrupt)
where
go l r = case (findPath $ take (pred m) corrupt, findPath $ take m corrupt) of
(Just _, Just _) -> go m r
(Just _, Nothing) -> Just $ pred m
(Nothing, Nothing) -> go l m
where
m = (l + r) `div` 2
part2 = liftM2 fmap (!!) search
main = getContents >>= print . (part1 &&& part2) . parse
Haskell
code
import Control.Arrow
import Control.Monad
import Control.Monad.RWS
import Control.Monad.Trans.Maybe
import Data.Array.Unboxed
import Data.List
import Data.Map qualified as M
import Data.Maybe
import Data.Set qualified as S
data Dir = N | S | W | E deriving (Show, Eq, Ord)
type Maze = UArray Pos Char
type Pos = (Int, Int)
type Node = (Pos, Dir)
type CostNode = (Int, Node)
type Problem = RWS Maze [(Node, [Node])] (M.Map Node Int, S.Set (CostNode, Maybe Node))
parse = toMaze . lines
toMaze :: [String] -> Maze
toMaze b = listArray ((0, 0), (n - 1, m - 1)) $ concat b
where
n = length b
m = length $ head b
next :: Int -> (Pos, Dir) -> Problem [CostNode]
next c (p, d) = do
m <- ask
let straigth = fmap ((1,) . (,d)) . filter ((/= '#') . (m !)) . return $ move d p
turn = (1000,) . (p,) <$> rot d
return $ first (+ c) <$> straigth ++ turn
move N = first (subtract 1)
move S = first (+ 1)
move W = second (subtract 1)
move E = second (+ 1)
rot d
| d `elem` [N, S] = [E, W]
| otherwise = [N, S]
dijkstra :: MaybeT Problem ()
dijkstra = do
m <- ask
visited <- gets fst
Just (((cost, vertex@(p, _)), father), queue) <- gets (S.minView . snd)
let (prevCost, visited') = M.insertLookupWithKey (\_ a _ -> a) vertex cost visited
case prevCost of
Nothing -> do
queue' <- lift $ foldr S.insert queue <$> (fmap (,Just vertex) <$> next cost vertex)
put (visited', queue')
tell [(vertex, maybeToList father)]
Just c -> do
if c == cost
then tell [(vertex, maybeToList father)]
else guard $ m ! p /= 'E'
put (visited, queue)
dijkstra
solve b = do
start <- getStart b
end <- getEnd b
let ((m, _), w) = execRWS (runMaybeT dijkstra) b (M.empty, S.singleton (start, Nothing))
parents = M.fromListWith (++) w
endDirs = (end,) <$> [N, S, E, W]
min = minimum $ mapMaybe (`M.lookup` m) endDirs
ends = filter ((== Just min) . (`M.lookup` m)) endDirs
part2 =
S.size . S.fromList . fmap fst . concat . takeWhile (not . null) $
iterate (>>= flip (M.findWithDefault []) parents) ends
return (min, part2)
getStart :: Maze -> Maybe CostNode
getStart = fmap ((0,) . (,E) . fst) . find ((== 'S') . snd) . assocs
getEnd :: Maze -> Maybe Pos
getEnd = fmap fst . find ((== 'E') . snd) . assocs
main = getContents >>= print . solve . parse
Haskell
Spent a lot of time trying to find symmetric quadrants. In the end made an interactive visualization and found that a weird pattern appeared on iterations (27 + 101k) and (75 + 103k’). Put those congruences in an online Chinese remainder theorem calculator and go to the answer: x ≡ 8006 (mod 101*103)
import Data.Bifunctor
import Data.Char
import qualified Data.Set as S
import Data.Functor
import Data.List
import Control.Monad
import Text.ParserCombinators.ReadP
import Data.IORef
bounds = (101, 103)
parseInt :: ReadP Int
parseInt = (*) <$> option 1 (char '-' $> (-1)) <*> (read <$> munch1 isDigit)
parseTuple = (,) <$> parseInt <*> (char ',' *> parseInt)
parseRow = (,) <$> (string "p=" *> parseTuple) <*> (string " v=" *> parseTuple)
parse = fst . last . readP_to_S (endBy parseRow (char '\n'))
move t (x, y) (vx, vy) = bimap (mod (x + vx * t)) (mod (y + vy * t)) bounds
getQuadrant :: (Int, Int) -> Int
getQuadrant (x, y)
| x == mx || y == my = 0
| otherwise = case (x > mx, y > my) of
(True, True) -> 1
(True, False) -> 2
(False, True) -> 3
(False, False) -> 4
where
(mx, my) = bimap (`div` 2) (`div` 2) bounds
step (x, y) (vx, vy) = (,(vx, vy)) $ bimap (mod (x + vx)) (mod (y + vy)) bounds
main = do
p <- parse <$> readFile "input14"
print . product . fmap length . group . sort . filter (/=0) . fmap (getQuadrant . uncurry (move 100)) $ p
let l = iterate (fmap (uncurry step)) p
current <- newIORef 0
actions <- lines <$> getContents
forM_ actions $ \a -> do
case a of
"" -> modifyIORef current (+1)
"+" -> modifyIORef current (+1)
"-" -> modifyIORef current (subtract 1)
n -> writeIORef current (read n)
pos <- readIORef current
putStr "\ESC[2J" -- clear screen
print pos
visualize $ fst <$> l !! pos
visualize :: [(Int, Int)] -> IO ()
visualize pos = do
let p = S.fromList pos
forM_ [1..(snd bounds)] $ \y -> do
forM_ [1..(fst bounds)] $ \x -> do
putChar $ if S.member (x, y) p then '*' else '.'
putChar '\n'
Haskell
import Data.Monoid
import Control.Arrow
data Tree v = Tree (Tree v) v (Tree v)
-- https://stackoverflow.com/questions/3208258
memo1 f = index nats
where
nats = go 0 1
go i s = Tree (go (i + s) s') (f i) (go (i + s') s')
where
s' = 2 * s
index (Tree l v r) i
| i < 0 = f i
| i == 0 = v
| otherwise = case (i - 1) `divMod` 2 of
(i', 0) -> index l i'
(i', 1) -> index r i'
memo2 f = memo1 (memo1 . f)
blink = memo2 blink'
where
blink' c n
| c == 0 = 1
| n == 0 = blink c' 1
| even digits = blink c' l <> blink c' r
| otherwise = blink c' $ n * 2024
where
digits = succ . floor . logBase 10 . fromIntegral $ n
(l, r) = n `divMod` (10 ^ (digits `div` 2))
c' = pred c
doBlinks n = getSum . mconcat . fmap (blink n)
part1 = doBlinks 25
part2 = doBlinks 75
main = getContents >>= print . (part1 &&& part2) . fmap read . words
Haskell
import Control.Arrow
import Control.Monad.Reader
import Data.Array.Unboxed
import Data.List
type Pos = (Int, Int)
type Board = UArray Pos Char
type Prob = Reader Board
parse :: String -> Board
parse s = listArray ((1, 1), (n, m)) $ concat l
where
l = lines s
n = length l
m = length $ head l
origins :: Prob [Pos]
origins =
ask >>= \board ->
return $ fmap fst . filter ((== '0') . snd) $ assocs board
moves :: Pos -> Prob [Pos]
moves pos =
ask >>= \board ->
let curr = board ! pos
in return . filter ((== succ curr) . (board !)) . filter (inRange (bounds board)) $ fmap (.+. pos) deltas
where
deltas = [(1, 0), (0, 1), (-1, 0), (0, -1)]
(ax, ay) .+. (bx, by) = (ax + bx, ay + by)
solve :: [Pos] -> Prob [Pos]
solve p = do
board <- ask
nxt <- concat <$> mapM moves p
let (nines, rest) = partition ((== '9') . (board !)) nxt
fmap (++ nines) $ if null rest then return [] else solve rest
scoreTrail = fmap (length . nub) . solve . pure
scoreTrail' = fmap length . solve . pure
part1 = sum . runReader (origins >>= mapM scoreTrail)
part2 = sum . runReader (origins >>= mapM scoreTrail')
main = getContents >>= print . (part1 &&& part2) . parse